什么是外接圆圆心

斩赤红之瞳结局2023-02-17  27

比较内心与外心,就要抓住定义。

内心是与内切圆的圆心,也就是说圆与三边都相切,若连接圆心与切点,则有圆心到三边距离相等,也就是说内心是角平分线的交点。

外心是外接圆的圆心,也就是说三角形的三个顶点在外接圆上,所以圆心到三个顶点的距离相等。所以是各边垂直平分线的交点

其余性质都可以从这挖掘出来

所谓三角形的"四心",是指三角形的四种重要线段相交而成的四类特殊点.它们分别是三角形的内心,外心,垂心与重心.

1.垂心

三角形三条边上的高相交于一点,这一点叫做三角形的垂心.

2.重心

三角形三条边上的中线交于一点,这一点叫做三角形的重心.

3. 三角形三边的中垂线交于一点,这一点为三角形外接圆的圆心,称外心

4. 三角形三内角平分线交于一点,这一点为三角形内切圆的圆心,称内心,

重心 三边上中线的交点

垂心 三条高的交点

内心 内接圆圆心 三个角角平分线交点

外心 外接圆圆心 三条边的垂直平分线交点 三角形三条边的垂直平分线的交点!!

锐角三角形的外心在三角形内

直角三角形的外心是斜边的中点

钝角三角形的外心在三角形外!!

外接圆圆心坐标公式,以三角形的外接圆圆心坐标公式为例:

例如:给定a(x1,y1),b(x2,y2),c(x3,y3)求外接圆心坐标O(x,y)。

根据克拉默法则:

x=((C1*B2)-(C2*B1))/((A1*B2)-(A2*B1));

y=((A1*C2)-(A2*C1))/((A1*B2)-(A2*B1));

即可算出圆心坐标。

详细解题步骤为:

1、首先,外接圆的圆心是三角形三条边的垂直平分线的交点,我们根据圆心到顶点的距离相等,可以列出以下方程:

(x1-x)*(x1-x)+(y1-y)*(y1-y)=(x2-x)*(x2-x)+(y2-y)*(y2-y);

(x2-x)*(x2-x)+(y2-y)*(y2-y)=(x3-x)*(x3-x)+(y3-y)*(y3-y);

2、化简得到:

2*(x2-x1)*x+2*(y2-y1)y=x2^2+y2^2-x1^2-y1^2;

2*(x3-x2)*x+2*(y3-y2)y=x3^2+y3^2-x2^2-y2^2;

令:A1=2*(x2-x1);

B1=2*(y2-y1);

C1=x2^2+y2^2-x1^2-y1^2;

A2=2*(x3-x2);

B2=2*(y3-y2);

C2=x3^2+y3^2-x2^2-y2^2;

即:A1*x+B1y=C1;

A2*x+B2y=C2;

3、最后根据克拉默法则:

x=((C1*B2)-(C2*B1))/((A1*B2)-(A2*B1));

y=((A1*C2)-(A2*C1))/((A1*B2)-(A2*B1));

得出圆心坐标(x,y)。


转载请注明原文地址:https://juke.outofmemory.cn/read/2977712.html

最新回复(0)