E指单位矩阵。
在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,这种矩阵被称为单位矩阵。它是个方阵,从左上角到右下角的对角线(称为主对角线)上的元素均为1。除此以外全都为0。
根据单位矩阵的特点,任何矩阵与单位矩阵相乘都等于本身,而且单位矩阵因此独特性在高等数学中也有广泛应用。
主对角线上的元素都为1,其余元素全为0的n阶矩阵称为n阶单位矩阵,记为 或 ,通常用I或E来表示。
在线性代数,大小为n的单位矩阵是在主对角线上均为1,而其他地方都是0的 的正方矩阵。它用 表示,或有时阶数可忽略时就直接用I来表示。如下所示:
同时单位矩阵也可以简单地记为一个对角线矩阵:
根据矩阵乘法的定义,单位矩阵的重要性质为: 和
单位矩阵的特征值皆为1,任何向量都是单位矩阵的特征向量。
因为特征值之积等于行列式,所以单位矩阵的行列式为1。因为特征值之和等于迹数,单位矩阵的迹为
同时,单位矩阵的特点是在对角线上的元素为1,其他的位置为0,如:
[ 1 0 0
0 1 0
0 0 1 ]
矩阵E是指单位矩阵。在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,这种回矩阵被称为单位矩阵。它是个方阵,从左上角到右下角的对角线(称为主对角线)上的元素均为1,除此以外全都为0。
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。