自然数的定义:自然数用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。
正整数的定义:正整数,为大于0的整数,也是正数与整数的交集。正整数又可分为质数,1和合数。
整数的定义:整数就是像-3,-2,-1,0,1,2,3,10等这样的数。
扩展资料:
正整数可带正号(+),也可以不带。如:+1、+6、3、5,这些都是正整数。 0既不是正整数,也不是负整数(0是整数)。
整数中能够被2整除的数,叫做偶数。不能被2整除的数则叫做奇数。即当n是整数时,偶数可表示为2n(n 为整数);奇数则可表示为2n+1(或2n-1)。
偶数包括正偶数(亦称双数)、负偶数和0。所有整数不是奇数,就是偶数。
在十进制里,我们可用看个位数的方式判断该数是奇数还是偶数:个位为1,3,5,7,9的数为奇数;个位为0,2,4,6,8的数为偶数。
参考资料:百度百科-整数
参考资料:百度百科-自然数
参考资料:百度百科-正整数
正整数是指除了0以外的自然数,即正整数与0的集合,自然数则通常是指非负整数,正整数又可分为质数,1和合数,和整数一样,正整数也是一个可数的无限集合。
整数的全体构成整数集,整数集是一个数环,在整数系中,零和正整数统称为自然数。整数不包括小数、分数。整数中,能够被2整除的数,叫做偶数。不能被2整除的数则叫做奇数。
正整数的符号是N⁺或者N*。整数集用Z表示,实数集用R表示。在集合论里,自然数集N是包括元素“0”的。若是指一般的自然数(集)(即不包括元素“0”)用N+或N*表示,其中符号+或*是上标。整数集合用字母“Z”来表示在数学里用大写符号Z表示全体整数的集合,包括正整数、0、负整数的全体构成整数集,整数集是一个数环。
正整数的表示方法
正整数为大于0的整数,也是正数和整数的交集。正整数通常用N+表示,可带正号(+),也可以不带。正整数可分为质数、1和合数。0既不是正整数,也不是负整数。正整数集是所有正数和整数的数的集合,包括从1开始的所有自然数。通常用符号N+、N*、N1、N>0表示。