e的正无穷和负无穷的值是多少

巧慧2023-02-16  22

e的负无穷次幂只能趋近于0(无穷小),它永远不可能等于0。

e的正无穷次幂为无穷大。

扩展资料:

        正无穷在实数范围内,表示某一大于零的有理数或 无理数数值 无限大的一种方式,没有具体数字,但是 正无穷表示比任何一个数字都大的数值。 符号为+∞。

数轴上可表示为向右箭头无限远的点。表示 区间时负无穷的一边用开区间。例如x∈(1, +∞)表示x>1。

负无穷某一负数值表示无限小的一种方式,没有具体数字,但是负无穷表示比任何一个数字都小的数值。 符号为-∞。

二者区别:无穷包括正无穷和负无穷,正无穷大于0的所以数、没有最大界限;负无穷小于0的所有数、没有最小界限。

e的负无穷次方极限等于“0”,e的正无穷次方等于“+∞”。

“e”也就是自然常数,是数学科的一种法则。约为2.71828,就是公式为lim(1+1/x)^x,x→∞或lim(1+z)^(1/z),z→0 ,是一个无限不循环小数,是为超越数。

e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数(Euler number),以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔 (John Napier)引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。

扩展资料:

自然常数e的来源:

第一次提到常数e,是约翰·纳皮尔(John Napier)于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德(William Oughtred)制作。第一次把e看为常数的是雅各·伯努利(Jacob Bernoulli)。

已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》(Mechanica)。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。

e的负无穷次方极限等于“0”,e的正无穷次方等于“+∞”。

其数值约为(小数点后100位):“e≈2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274”。

“e”也就是自然常数,是数学科的一种法则。约为2.71828,就是公式为lim(1+1/x)^x,x→∞或lim(1+z)^(1/z),z→0,是一个无限不循环小数,是为超越数。

极限的求法:

1、连续初等函数,在定义域范围内求极限,可以将该点直接代入得极限值,因为连续函数的极限值就等于在该点的函数值。

2、利用恒等变形消去零因子(针对于0/0型)。

3、利用无穷大与无穷小的关系求极限。

4、利用无穷小的性质求极限。

5、利用等价无穷小替换求极限,可以将原式化简计算。

6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。

7、利用两个重要极限公式求极限。


转载请注明原文地址:https://juke.outofmemory.cn/read/2970654.html

最新回复(0)