抽签原理适用范围

饼干的热量2023-02-15  21

当样本总体和抽取的样本容量都不大的时候,通常用抽签法。

抽签法,总体有限,易于编号先将总体中的所有个体编号(号码可以从1到N),并把号码写在形状、大小相同的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌。

抽签时,每次从中抽出1个号签,连续抽取 次,就得到一个容量为 的样本,对个体编号时,也可以利用已有的编号,例如从全班学生中抽取样本时,可以利用学生的学号、座位号等。抽签法简便易行,当总体的个体数不多时,适宜采用这种方法。

抽签原理

抽签原理来自全概率公式,是指抽签的顺序和中签的概率无关。10个考签中有4个难签, 3人参加抽签(不放回), 甲先, 乙次, 丙最后, 求甲抽到难签, 甲,乙都抽到难签, 甲没抽到难签而乙抽到难签以及甲,乙,丙都抽到难签的概率。

事实上, 即使这十张签由10个人抽去, 因为其中有4张难签, 因此每个人抽到难签的概率都是4/10, 与他抽的次序无关。

正如十万张彩票如果只有10个特等奖, 则被十万个人抽去, 无论次序如何, 每个人的中奖概率都是十万分之十, 即万分之一。这在概率论中叫抽签原理。

这类问题经常在研究生的入学考试题中出现, 如果知道, 就能够很快回答, 否则就有可能出错。抽签口语测试,共有a+b张不同的考签,每个考生抽1张考签,抽过的考签不再放回,某考生只会考其中的a张,他是第k个抽签的,求该考生抽到会考考签的概率。

抽签原理来自全概率公式,是指抽签的顺序和中签的概率无关。

全概率公式是这样推导出来的:将一个复杂事件的概率分解为若干个互不相容(也就是互斥)的简单事件的和,再应用概率的加法公式与乘法公式求得的结果。

事实上, 即使这十张签由10个人抽去, 因为其中有4张难签, 因此每个人抽到难签的概率都是4/10, 与他抽的次序无关.

正如十万张彩票如果只有10个特等奖, 则被十万个人抽去, 无论次序如何, 每个人的中奖概率都是十万分之十, 即万分之一.

这在概率论中叫抽签原理.

这类问题经常在研究生的入学考试题中出现, 如果知道, 就能够很快回答, 否则就有可能出错.

抽签口语测试,共有a+b张不同的考签,每个考生抽1张考签,抽过的考签不再放回,某考生只会考其中的a张,他是第k个抽签的,求该考生抽到会考考签的概率.

分析

因为每个人抽哪一张考签是随意的,所有人抽签后抽出的结果相当于这些考签的一个全排列,而且各种不同的排列结果出现的可能性相同,本题是求等可能事件的概率问题.由于某考生是第是次抽签,他能抽到会考考签相当于全排列中第k个元素,是某人会考的a个考签中的一个,我们可以用排列组合知识求出这种排列的所有不同种数,然后用等可能事件的概率公式求解.

解:本题是等可能事件的概率问题.a+b个考生的所有不同的抽签结果的总数为,

某个考生第k次抽签,他正好抽到会考的a张考签的一个,相当于所有抽签的结果中第k张考签是a张考签中的1张,我们可以得到所有这种抽签结果的总数为:

所以某个考生抽到会考考签的概率为:

说明:从计算结果看,第几次抽签对该考生抽到会考考签的概率并没有影响,也就是说,无论他是第几个抽签,都不会影响他抽到会考考签的可能性.在日常生活中有这样的问题:10张彩票中有1张是中奖彩票,现在10个人去摸彩,先模后摸对中奖的可能性有无影响?现在我们可以来计算这个问题的结果,现在假定你是第m个去摸奖,为了计算中奖的概率,先算出10个人摸彩的所有可能结果是10!,而中奖彩票正好出现在第m个的所有可能结果为9!,这样可以得出你中奖的概率为 ,结果与m并无关系,根本无须担心中奖彩票被别人抓去.

假设只有一个人中奖,因为第二个中奖了是在第一个人没中奖的基础上的,所以第一步得先算上第一个人没中奖的概率 ,根据乘法原理,再乘以第二个人中奖的概率.所以你看共是5个签,有一个签是奖,其余4个签没奖,第一个人在没中奖的选了一张所以是A41 第二个人中奖了说明是A11 基本事件是从5个里面先后抽走2张A52所以是 A41A11/A52即A41/A52 你可以阅读一下高二数学教材里的一篇阅读材料,抽签有先有后,对个人公平吗?

其实还可以这样理解:第一个人没中奖的概率是4/5 第二个人中奖的概率是1/4 那么是4/5*1/4


转载请注明原文地址:https://juke.outofmemory.cn/read/2964980.html

最新回复(0)