正三棱锥定义如下:
正三棱锥是锥体中底面是正三角形,三个侧面是全等的等腰三角形的三棱锥。
1、在几何学上,棱锥又称角锥,是三维多面体的一种,由多边形各个顶点向它所在的平面外一点依次连直线段而构成。多边形称为棱锥的底面。
2、直三棱锥和正三棱锥的区别是直三棱锥的四个面都是直角三角形,正三棱锥是锥体中底面是正三角形,三个侧面是全等的等腰三角形的三棱锥,正三棱锥不等同于正四面体。
3、高中立体几何中常见的几何体有柱体、锥体、台体和球体,在大多数学生眼中球体是最简单的几何体,因为它的定义是圆的定义的拓展,高中数学教材给出来的知识点只有两个公式:V球=43πR3和S球=4πR2(R是球的半径).但是如果到了高三大综合训练时,就会觉着与球体有关的问题,特别是几何体的外接球问题,一点都不简单,甚至有些学生把它归到了难题里边。
性质:
1.底面是等边三角形。
2.侧面是三个全等的等腰三角形。
3.顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。
4.常构造以下四个直角三角形:
(1)斜高、侧棱、底边的一半构成的直角三角形;(含侧棱与底边夹角)
(2)高、斜高、斜高射影构成的直角三角形;(含侧面与底面夹角)
(3)高、侧棱、侧棱射影构成的直角三角形;(含侧棱与底面夹角)
(4)斜高射影、侧棱射影、底边的一半构成的直角三角形。
两相邻侧面所成角相等的三棱锥是一种特殊的正三棱锥,或者说是正四面体,只要底面是正三角形的直三棱锥就是正三棱锥。
正三棱锥是锥体中底面是正三角形,三个侧面是全等的等腰三角形的三棱锥。正三棱锥不等同于正四面体,正四面体必须每个面都是全等的等边三角形。
性质
1、 底面是等边三角形。
2、侧面是三个全等的等腰三角形。
3、顶点在底面的射影是底面三角形的中心(也是重心、垂心、外心、内心)。
1.正棱锥的定义:如果一个棱锥的底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
2.正棱锥的性质:各侧棱相等,各侧面都是全等的等腰三角形。
3.棱锥的高、斜高、斜高在底面内的射影组成一个直角三角形。
4.棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形。