粒度与搬运流体的性质及其力学特征密切相关,它是判别环境的标志之一。目前国际上应用最广的粒度分级标准是伍登-温德华粒级。它是以1mm作为基数乘以或除以2来分级的。后经克伦宾将其转化为φ值。转换公式为:
φ=-log2d
式中:d为毫米直径值。形成一个以1为基数,2为公比数的等比级数列。如表4-3所示。
表4-3 伍登-温德华φ值粒度标准
*有些分界点记为0.05mm;**有些分界点记为0.005mm
沉积物粒度测量方法,主要包括放大镜、照片分析、筛析、沉降分析、显微镜下粒度分析等方法。针对不同的颗粒选择适用的方法进行测量,其中,砾石等颗粒级别较大的多用皮尺或测量规直接测量,用量筒测砾石的体积。可松解或疏松的细、中碎屑岩多采用筛析法。粉砂及黏土岩常用沉降法、流水法等方法测量。固结的无法松解的岩石多采用显微镜下粒度分析。不同的方法测出的结果,略有差别,需校正后才能互用,其中沉降粒径和筛析粒径之间的偏差小于或等于0.1φ,可以直接互用。但薄片显微镜下分析粒径,因存在切片效应,需经过弗里德曼(1962)所提出的粒度的回归校正方程:
D=0.3815+0.9027d
式中:D为校正后的筛析粒径,d是薄片中测定的视长径,均为φ单位。进行校正后才能与筛析法的结果相互用,一般校正后的平均粒径最大偏差一般不超过1/4φ单位。
此外,在粒度测量中杂基校正是一项重要的工作,其方法是:显微镜测至7φ,测定或估出杂基含量。取其2/3~1/2为校正值,假定为Δ,将各累计频率乘以(100-Δ),重新绘曲线。对于弱固结岩石,可用同一标本既做筛析也作薄片分析,通过实验求出校正系数(100-Δ)的数值。
粒度分析的结果可获取到大量的测值,这种大量的数字资料要用统计的方法加以处理,才能推断其与流体力学性质和沉积环境之间的关系。主要的方法是:根据资料做出一些图件,从这些图件上做定量的解释分析。或者直接通过计算,统计参数。两种方法各有优劣,往往需综合分析利用。
粒度分析图主要包括直方图、频率曲线图和累积曲线图(累积百分含量图)。其中最常用的是累积百分含量图,是由维希尔(1969)根据采自现代和古代不同环境内的1500个样品测得的粒度数据,以粒径(φ值)为横坐标,以累积概率值为纵坐标,用来表现大于一定粒级的百分含量统计图。他通过分析得出了沉积物搬运方式与粒度分布之间的关系,以及一些环境的概率图模式(图4-1)。
图4-1 搬运方式与粒度分布的关系
(据Visher,1969)
沉积物的粒度一般不是表现为单一的对数正态分布,因此,在概率分布图上总是表现为几个相交的直线段。每个直线段是不同搬运方式产生的响应。主要包括牵引负载、跳跃负载和悬浮负载三种。其中,悬浮负载的颗粒一般很细,粒径在0.1mm左右,其负载颗粒的粗细变化取决于介质的扰动强度,在概率图上的右上角形成悬浮次总体;跳跃负载是指靠近河床底部层,通过在动荡的水中或流水中对颗粒进行分选,粒径一般在0.15~1.0mm之间,往往是沉积样品中分选最好的组分,在概率图的中部形成跳跃次总体,其不是一个粒度总体,而是由两部分组成,如海滩砂;底部牵引负载是粗粒组分,因颗粒粗而在地面上滚动,形成的滚动次总体位于图的左下方。沉积物因粒径大小和分选性的不同,经历了不同的搬运方式,在累积概率图上形成了不同的次总体直线。直线的不同斜率代表不同的分选性,斜率越大代表分选越好,一定的粒度分布区间和斜率,表明不同的次总体具有一定的平均粒径和标准偏差。各直线段的交点称为交截点,有的样品在两个粒度次总体间有混合带,在图上表现为两线段圆滑接触。
大量的粒度数据通过计算获得各种分析参数后,往往也通过作图来进行定量分析,最常用的是弗里德曼(1961,1967)通过对现代海洋与河流、湖滩沉积所做的粒度分析,用粒度参数离散图(采用10种粒度参数,作出19种图)来区分河流与海(湖)滩沉积。离散图能够把不同成因的砂区别开来,是由于不同成因的砂具有不相同的结构参数。
此外,C-M图也是另外一种常用的图版(图4-2),它是应用每个样品的C值和M值绘成的图形,由Passega(1957,1964)所提出。其中,C值是累积曲线上颗粒含量1%处对应的粒径,M值是累积曲线上50%处对应的粒径。C值与样品中最粗颗粒的粒径相当,代表了水动力搅动开始搬运的最大能量;M值是中值,代表了水动力的平均能量。该图版对于每一个样品都可以用其C值和M值,在以C值为纵坐标,以M值为横坐标的双对数坐标纸上投得一个点,研究沉积地层包含的由粗至细的全部粒度结构类型样品在图纸上会投得一个点群。根据点群的分布绘出的图形形态、分布范围,以及图形与C-M基线的关系等特点,与已知沉积环境的典型C-M图进行对比,再结合其岩性特征,从而对该层沉积岩的沉积环境做出判断。
图4-2 牵引流的C-M图像及粒度类型
(据Passega,1964)
在C-M图中,Ⅰ,Ⅱ,Ⅲ,Ⅸ 段表示C>1000μm,Ⅳ,Ⅴ,Ⅵ,Ⅶ,Ⅷ段表示C<1000μm。1表示牵引流沉积,2表示浊流沉积,“T”代表静水悬浮沉积。“S”形图是以河流沉积为例的完整C-M图,可划分为N—O—P—Q—R—S段。其中从左至右:
N—O段基本上由滚动颗粒组成,C值一般大于1mm(1000μm),常构成河流的砂坝砾石堆积物。
O—P段是滚动物质与间歇悬浮物质(跳跃)混合,物质组分中滚动组分与悬浮组分相混合。C值一般大于800μm,但由于滚动组分中有悬浮物质的参加,从而使M值有明显的变化。C值稍微变化即会使M 值发生重大改变,即粒度分布极不对称,粗细首尾不均。
P—Q段是以间歇悬浮质为主,粗粒滚动质减少。由上游至下游C值变化而M值不变,说明随着流体搬运能力的减弱,越向下游滚动组分的颗粒越小。但由于滚动颗粒的数量并不多,因此M值基本不变。P点附近的C值以Cr表示,它代表着最易作滚动搬运的颗粒直径。
Q—R段为递变悬浮段,沉积物的特点是C值与M值相应变化,显示出与C=M线平行的结果,主要搬运方式为递变悬浮搬运,悬浮物质组分在流体中由下向上粒度逐渐变细,密度逐渐变低。它一般位于水流底部,常是由于涡流发育造成的。该段C的最大值以Cs表示。
R—S段为均匀悬浮段,是粒径和密度不随深度变化的完全悬浮,随着M值向S端逐渐变小,C值基本不变,最大C值即Cu,它代表均匀悬浮搬运的最大粒级。搬运方式常是递变悬浮之上的上层水流搬运,不受底流搬运分选,物质组成主要为粉砂和泥质混合物,最粗的粒度为细砂。表示在河流中从上游至下游沉积物的粒度成分变化不大,只是粗粒级含量相对减少。
C-M图也可用来研究水深、分选性、古流速和碎屑岩分类等,它是一种多功能综合图。
矿粒(或矿块)的大小称为粒度。破碎、磨碎和选别过程中所处理的物料,都是粒度不同的各种矿粒的混合物。将矿粒混合物按粒度分成若干级别,这些级别叫做粒级。物料中各粒级的相对含量叫做粒度组成。粒度组成的测定工作叫做粒度分析。粒度组成的测定是一项很重要的工作,在许多工业部门都常遇到。例如水泥工业、冶金工业、煤粉制备、土工试验、甚至食品加工等部门,都会用到粒度分析,也是选矿试验中必不可少的一个检测项目,原矿和产品都常需进行粒度分析。
没有一个粒度分析方法,可以适用于一切粒度范围,一般都是按粒度大小不同采用不同的测定方法。目前应用的各种测定方法及其适用范围如表1所示。其中有的方法得出的是粒度分布,有的方法得出的是平均直径;有的是直接测量粒度(如筛析和显微镜测定);有的则是根据其他参数换算(如沉降速度和比表面);有的是在气相中进行的干法,有的则是在液相中进行的湿法。表1
粒度测定方法及其所适用的粒度范围
选矿生产和试验研究中经常采用的粒度分析方法是筛分分析、水析和显微镜分析。
对于粉状物料常常直接测定比表面(指单位重量的矿粒群的总表面积)。从比表面的测定数据可在一定假定条件下,求出平均粒度(直径)。测定比表面的主要方法有吸附法、渗透法(液体渗透法;气体渗透法)。
几种粒度测定方法比较如下:筛析法的优点是设备便宜、坚固、易制、易操作,适于测定粗粒。一般干筛可筛至100微米(150目),再细建议钐湿筛,现今用光电技术制造的微孔筛可以湿筛细到10微米,但实际上小于40-60微米多半用沉降分析,前者测得的是几何尺寸,后者是具有相同沉降速度的当量球径。筛析法受颗粒形状影响很大。显微镜法直观测出颗粒尺寸和形状,因此常用于校准其它测量方法,其最佳测量范围为0.5-20微米之间,当粒度扩大到40微米以上,则易引起偏差。沉降法测量粒度的最大优点是统计性和重复性好,但受颗粒形状和结构影响很大,适用于1-75微米,不能直接观测颗粒的大小和形状。吸附法的特点是测定范围较大,但不能测出粒度分布曲线,只能间接换算出一个增均尺寸,而且受环境影响较大。渗透法是一种经济简便的粒度测量法,但可靠性和重复性差。