向径指的是位置矢量。
向径的用途:
向径可表示空间任意两点之间的位置关系。R是以P'点为起点、P点为终点的空间矢量,它的模表示P点相对于P'点的距离,它的方向表示P点相对于P'点所处的方位,则称R为P点相对于P'点的相对位置矢量。
若考虑P'点相对于P点的相对位置矢量R',则R'的方向是由P点指向P'点,有R'=-R。任何真实的物理场,都有其产生的根源即所谓的场源,例如静止电荷是静电场的场源,恒定电流是恒定磁场的场源,等等。
场源和它所产生的物理场总是与空间概念联系在一起的。以后我们将要研究的电磁场和它的源之间存在的关系,其中场源所在位置的点和需要确定场量(如电场强度矢量和磁场强度矢量)的点需要在名称和符号上加以明确的区分。
场源所在位置的点简称源点,用加撇的源点坐标 (x', y', z') 或r'表示;需要确定场量的点简称场点,用不带撇的场点坐标(x, y, z)或r表示。于是,R就具有了场点相对于源点的相对位置矢量的特殊含义。
至于空间普通两点的相对位置矢量,可通过加双下标予以区别,如将P2点相对于P1点的相对位置矢量记为R12,其方向是由P1点指向P2点。
向径一般指位置矢量。 位置矢量是在某一时刻,以坐标原点为起点,以运动质点所在位置为终点的有向线段。位移和位矢虽然都是矢量,但二者是两个不同的概念。
位矢描述的是在某一时刻运动质点在空间中的位置;而位移描述的是在某一时间间隔内运动质点位置变动的大小和方向。位矢与时刻相对应;位移与时间间隔相对应。
特点:
(1)两矢量的点积为一标量,其正、负取决于α是锐角还是钝角。
(2)点积遵从交换律。
(3)A与B相互垂直,|A||B|cosα=0,反之亦然。
(4)在直角坐标下A、B的点积运算:将两矢量的各分量逐项点乘。矢量的点积遵循分配率。
位矢描述的是在某一时刻运动质点在空间中的位置;而位移描述的是在某一时间间隔内运动质点位置变动的大小和方向。位矢与时刻相对应;位移与时间间隔相对应。
向径一般指位置矢量,位置矢量是在某一时刻,以坐标原点为起点,以运动质点所在位置为终点的有向线段。位移和位矢虽然都是矢量,但二者是两个不同的概念。
位矢是在某一时刻,以坐标原点为起点,以运动质点所在位置为终点的有向线段;而位移是在一段时间间隔内,从质点的起始位置引向质点的终止位置的有向线段。
位矢描述的是在某一时刻运动质点在空间中的位置;而位移描述的是在某一时间间隔内运动质点位置变动的大小和方向。位矢与时刻相对应;位移与时间间隔相对应。
相对位置矢量:相对位置矢量可表示空间任意两点之间的位置关系。R是以P'点为起点、P点为终点的空间矢量,它的模表示P点相对于P'点的距离,它的方向表示P点相对于P'点所处的方位,则称R为P点相对于P'点的相对位置矢量。
若考虑P'点相对于P点的相对位置矢量R',则R'的方向是由P点指向P'点,有R'=-R。
任何真实的物理场,都有其产生的根源即所谓的场源,例如静止电荷是静电场的场源,恒定电流是恒定磁场的场源,等等。场源和它所产生的物理场总是与空间概念联系在一起的。