常见的几种随机序列

毒隐翅虫2023-02-13  21

在研究与分析问题中经常会遇到三种随机序列,下面分别进行介绍。

1.2.8.1 正态(高斯)随机序列

正态随机序列x(n)的N维联合高斯分布的概率密度函数为

地球物理信息处理基础

式中

X=[x1,x2,x3,…,xN]T,μ=[μx1,μx2,μx3,…,μxN]T

地球物理信息处理基础

式(1-54)表明,正态(高斯)随机序列仅决定于其均值矢量μ以及方差阵∑。具有指数型自相关函数的平稳高斯过程称为高斯-马尔可夫(Gauss-Markov(Марков))过程。这种信号的自相关函数和功率谱密度函数分别为

rxx(m)=σ2e-β|m| (1-55)

地球物理信息处理基础

高斯——马尔可夫也是一种常见的随机信号,适合于大多数物理过程,具有较好的精确性,数学描述简单。因为当m→∞时,自相关函数趋近于0,所以均值为0,随机过程的自相关函数特性完全描述了过程的特性。

1.2.8.2 白噪声序列

如果随机序列x(n),其随机变量是两两不相关的,即

地球物理信息处理基础

式中

地球物理信息处理基础

则称该序列为白噪声序列;如果白噪声序列是平稳的,则

cov(xn,xm)=σ2δnm (1-58)

式中σ2是常数。设均值μxn=μ=0,其功率谱Pxx(ejω)=σ2,在整个频带上功率谱是一个常数。“白噪声”的名称由牛顿提出,他指出,白光包含了所有频率的光波,而在这里,功率谱Pxx(ejω)在整个频带上是一个常数,说明白噪声的功率谱是包含所有频率成分的序列。

如果白噪声序列服从正态分布,序列中随机变量的两两不相关性就是相互独立性,称之为正态(高斯)白噪声序列。显然,白噪声是随机性最强的随机序列,实际中不存在,是一种理想白噪声,一般只要信号的带宽大于系统的带宽,且在系统的带宽中信号的频谱基本恒定,便可以把信号看作白噪声。注意:正态和白色是两种不同的概念,前者是指信号取值的规律服从正态分布,后者指信号不同时刻取值的关联性。

1.2.8.3 谐波过程

谐波过程的描述如下:

地球物理信息处理基础

式中Ai、ωi均为常数,θi是一独立随机变量,在(-π,π]内服从均匀分布,即

地球物理信息处理基础

可以证明,这种谐波信号模型是平稳的,设N=1时,有

x(n)=A cos(ωn+θ)

它的统计平均值和自相关函数

地球物理信息处理基础

rxx(n+m,n)=E[x[n+m]x(n)]

地球物理信息处理基础

由于谐波过程的统计平均值与时间n无关,自相关函数仅与时间差m有关,谐波过程是平稳的。

当N大于1时,也有同样的结论,可以证明:

地球物理信息处理基础

随机序列的定义

随机序列(random sequence),更确切 的,应该叫做,随机变量序列。随机变量 序列,也就是随机变量形成的序列。有时 候为了简称,省略了变量二字。

随机序列的产生为了形容随机变量形成的 序列。

一般的,如果用X1,X2……Xn(表示n下 标于X)代表随机变量,这些随机变量如 果按照顺序出现,就形成了随机序列,记 做X^n(表示n上标于x)。这种随机序列 具备两种关键的特点:其一,序列中的每 个变量都是随机的;其二,序列本身就是 随机的。

随机序列举例说明

为了说明什么是随机序列,我们来举两个 例子。

假设我们持续扔一个色子,我们把这个事 件细分,那么这个事件应该包括扔第一次 色子得到的点数,扔第二次得到的点数, 直到扔第n次得到的点数。把每次扔的的 点数按顺序分别记做X1,X2……,Xn。这 里每个X的取值可能为{1 2 3 4 5 6}。那么 我们可以写出随机序列:

X^n = X1X2X3……Xn

更实际的,我们可以用高速路收费站来说 明。假设一个收费站有10个出口。那么, 把收费站出口出去的车数记做随机变量Xn ,这里Xn就是集合{X1,X2……,Xn},集 合中每个元素的取值为{0 1 2 3 4 5 6 7 8 9 10}。那么如果按照时间顺序观察,不难得 出一个随机序列,这个序列表示出口出去 车数的一个变化情况,是一个序列,记做 :

X^n = X1X2X3……Xn

它是好几个随机变量的序列.举个例子,一个城市的每天 的用电量是一个随机变量Y,每家每户的用电量 可以设为Xi,(i=1,2,3,.....),那么Y=X1+X2+X3+......, 这X1,X2,X3.....就是一个随机变量的序列.

在信息处理与传输中,经常遇到一类称为平稳随机序列的重要信号。所谓平稳随机序列,是指它的N维概率分布函数或N维概率密度函数与时间n的起始位置无关。换句话说,平稳随机序列的统计特性不随时间的平移而发生变化。如果将随机序列在时间上平移k,其统计特性满足等式:

地球物理信息处理基础

这类随机序列就称为平稳随机序列。然而,在实际情况中,这一平稳条件很难得到满足,因此常将这类随机序列称为狭义(严)平稳随机序列。大多数情况下,虽然随机序列并不是平稳随机序列,但是它们的均值和均方值却不随时间而改变,其相关函数仅是时间差的函数,一般将这一类随机序列称为广义(宽)平稳随机序列。下面我们重点分析研究这类平稳随机序列。为简单起见,将广义平稳随机序列简称为平稳随机序列。

平稳随机序列的一维概率密度函数与时间无关,因此均值、方差和均方值均与时间无关,它们可分别表示为

μx=E[X(n)]=E[X(n+m)] (1-17)

地球物理信息处理基础

二维概率密度函数仅仅取决于时间差,与起始时间无关;自相关函数与自协方差函数是时间差的函数。自相关函数rxx(m)与自协方差函数cxx(m)(用cxx(m)表示covxx(m))分别为

rxx(m)=E[X(n+m)X*(n)] (1-20)

cxx(m)=E{[X(n+m)-μx][X(n)-μx]*} (1-21)

对于两个各自平稳而且联合平稳的随机序列,其互相关函数为

rxy(m)=rxy(n+m,n)=E[X(n+m)Y*(n)] (1-22)

显然,对于自相关函数和互相关函数,下面公式成立

地球物理信息处理基础

如果对于所有的m,满足rxy(m)=0,则称两个随机序列互为正交。如果对于所有的m,满足rxy(m)=μxμy,cxy(m)=0,则称两个随机序列互不相关。

实平稳随机序列的相关函数、协方差函数具有以下重要性质

(1)自相关函数和自协方差函数是m的偶函数,即

rxx(m)=rxx(-m),cxx(m)=cxx(-m) (1-25)

而互相关函数和互协方差函数有如下关系

rxy(m)=ryx(-m),cxy(m)=cyx(-m) (1-26)

(2)rxx(0)在数值上等于随机序列的平均功率,即

地球物理信息处理基础

(3)

rxx(0)≥|rxx(m)| (1-28)

(4)

地球物理信息处理基础

(5)

上两式说明大多数平稳随机序列内部的相关性随着时间差的变大,愈来愈弱。

(6)

地球物理信息处理基础


转载请注明原文地址:https://juke.outofmemory.cn/read/2952214.html

最新回复(0)