它是水力学所采用的基本原理,即:动能+重力势能+压力势能=常数。其最著名的推论为:等高流动时,流速大,压力就小。它仅适用于粘度可以忽略、不可被压缩的理想流体。
伯努利,瑞士物理学家、数学家、医学家。他是伯努利这个数学家族(4代10人)中最杰出的代表,16岁时就在巴塞尔大学攻读哲学与逻辑,后获得哲学硕士学位,17~20岁又学习医学,于1721年获医学硕士学位,成为外科名医并担任过解剖学教授。但在父兄熏陶下最后仍转到数理科学。伯努利成功的领域很广,除流体动力学这一主要领域外,还有天文测量、引力、行星的不规则轨道、磁学、海洋、潮汐等。
适于理想流体(不存在摩擦阻力)。式中P为流体中某点的压强,v为流体该点的流速,ρ为流体密度,g为重力加速度,h为该点所在高度,C是一个常量。
假设条件
使用伯努利定律必须符合以下假设,方可使用;如没完全符合以下假设,所求的解也是近似值。
定常流:在流动系统中,流体在任何一点之性质不随时间改变。
不可压缩流:密度为常数,在流体为气体适用于马赫数(Ma)<0.3。
无摩擦流:摩擦效应可忽略,忽略黏滞性效应。
流体沿着流线流动:流体元素沿着流线而流动,流线间彼此是不相交的。
伯努利原理通俗解释如下:
在流体中,速度大,压强就小,速度小,压强就高,当然也有它的适用条件,就是所谓的理想流体,第一就是流体不随时间变化,第二就是无摩擦,第三就是不可压缩,第四就是流体沿着流线运动,流线彼此不相交。
丹尼尔伯努利在1726年首先提出时的内容就是:在水流或气流里,如果速度小,压强就大,如果速度大,压强就小。
向AB管吹进空气。如果管的切面小(像a处),空气的速度就大;而在切面大的地方(像b处),空气的速度就小。在速度大的地方压力小,速度小的地方压力大。因为a处的空气压力小,所以C管里的液体就上升;同时b处的比较大的空气压力使D管里的液体下降。
丹尼尔伯努利出生于荷兰的格罗宁根,16岁时获艺术硕士学位,21岁时又获得医学博士学位。他曾申请解剖学和植物学教授职位,但未成功。丹尼尔受父兄影响,一直很喜欢数学。
1724年,他在去威尼斯的旅途中发表了《数学练习》一文,引起学术界关注,并被邀请到圣彼得堡科学院工作。1725年,25岁的丹尼尔受聘为圣彼得堡科学院生理学院士和数学院士。
1727年,20岁的欧拉(后人将他与阿基米德、牛顿和高斯并列为数学史上的“四杰”)到圣彼得堡工作,成为丹尼尔的助手。
伯努利方程三种公式如下:
P1/ρg+h1+ν²1/2g=C(constant value)。
ρg(P1/ρg+h1+ν²1/2g)=C(another constant value)。
i.e.P1+h1ρg+1/2ρv^2=C。
式中p为流体中某点的压强,v为流体该点的流速,ρ为流体密度,g为重力加速度,h为该点所在高度,C是一个常量。它也可以被表述为p1+1/2ρv12+ρgh1=p2+1/2ρv22+ρgh2。
相关内容:
使用伯努利定律必须符合以下假设,方可使用;如没完全符合以下假设,所求的解也是近似值 :
1、定常流:在流动系统中,流体在任何一点之性质不随时间改变。
2、不可压缩流:密度为常数,在流体为气体适用于马赫数(Ma)<0.3。
3、无摩擦流:摩擦效应可忽略,忽略黏滞性效应。
4、流体沿着流线流动:流体元素沿着流线而流动,流线间彼此是不相交的。