如何计算相关系数

温州外国语学校2023-02-10  18

若Y=a+bX,则有:

令E(X) = μ,D(X) = σ

则E(Y) = bμ + a,D(Y) = bσ

E(XY) = E(aX + bX) = aμ + b(σ + μ)

Cov(X,Y) = E(XY) − E(X)E(Y) = bσ

扩展资料:

定义

相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量。由于研究对象的不同,相关系数有如下几种定义方式。

简单相关系数:又叫相关系数或线性相关系数,一般用字母r 表示,用来度量两个变量间的线性关系。

定义式

其中,Cov(X,Y)为X与Y的协方差,Var[X]为X的方差,Var[Y]为Y的方差

复相关系数:又叫多重相关系数。复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的季节性需求量与其价格水平、职工收入水平等现象之间呈现复相关关系。

典型相关系数:是先对原来各组变量进行主成分分析,得到新的线性关系的综合指标,再通过综合指标之间的线性相关系数来研究原各组变量间相关关系。

计算等级相关系数的公式

r = ∑({x-(n+1)/2}{y-(n+1)/2})/√(∑{(x-(n+1)/2)^2} ∑{(y-(n+1)/2)^2 })。

(亦可表为r = 1 - (6∑(x-y)^2 )/(n^3-n))。

原本是为(两随机变量)正态相关而推导的;正态相关面在两随机变量取值中心凸起最高,而在(该两变量)其余取值处则会向各个方向延伸。

在一项特定的试验中:

正态相关面的各种组合都是可能出现的。但x和y的可能取值均在有限区间内,且x, y(一次)只能在其中取到也仅能取到一个值。

因此,由等级相关系数公式表示的x和y的相关关系就需要作进一步的考察。等级相关系数r可能为某分布之一参数的估计量,但这分布为何并不清楚,而r是否为该参数的最佳估计也不清楚。

常见的相关系数为简单相关系数,简单相关系数又称皮尔逊相关系数或者线性相关系数。线性相关系数计算公式如图所示:

r值的绝对值介于0~1之间。通常来说,r越接近1,表示x与y两个量之间的相关程度就越强,反之,r越接近于0,x与y两个量之间的相关程度就越弱。

线性相关系数性质:

(1)定理: | ρXY | = 1的充要条件是,存在常数a,b,使得P{Y=a+bX}=1。

相关系数ρXY取值在-1到1之间,ρXY = 0时。

称X,Y不相关| ρXY | = 1时,称X,Y完全相关,此时,X,Y之间具有线性函数关系| ρXY | <1时,X的变动引起Y的部分变动,ρXY的绝对值越大,X的变动引起Y的变动就越大, | ρXY | >0.8时称为高度相关,当 | ρXY | <0.3时称为低度相关,其它时候为中度相关。

(2)推论:若Y=a+bX,则有。

证明: 令E(X) = μ,D(X) = σ。

则E(Y) = bμ + a,D(Y) = bσ。

E(XY) = E(aX + bX) = aμ + b(σ + μ)。

Cov(X,Y) = E(XY) − E(X)E(Y) = bσ。

若b≠0,则ρXY ≠ 0。

若b=0,则ρXY = 0。


转载请注明原文地址:https://juke.outofmemory.cn/read/2932761.html

最新回复(0)