圆柱的侧面积公式:S=Ch=πdh=2πrh,其中d表示圆柱底面直径,c表示底面周长,h表示圆柱的高。
一个长方形以一边为轴旋转一周,所经过的空间叫做圆柱体。圆柱的两个圆面叫底面,周围的面叫侧面,一个圆柱体是由两个底面和一个侧面组成的。圆柱体的两个底面是完全相同的两个圆面。两个底面之间的距离是圆柱体的高。圆柱体的侧面是一个曲面,如果沿着圆柱体的一条高将圆柱体的侧面剪开,圆柱体的侧面的展开图是一个长方形、正方形。斜着切开就得到平行四边形。
由于沿着圆柱体的一条高将圆柱体的侧面剪开,圆柱体的侧面的展开图是一个长方形,得到的长方形的长是圆柱的底面周长,宽是圆柱体的高,因为,长方形的面积计算公式是长×宽,因此,圆柱的侧面积计算公式是底面周长×高。即:S=Ch=πdh=2πrh。
圆柱各部分面积的计算:
1、圆柱的侧面积=底面的周长×高,或: 圆柱的侧面积=底面半径×2×π×高
公式: S侧=Ch(C表示底面的周长,h表示圆柱的高), 或: S侧=2πrh
2、圆柱的底面积=πr² 公式:S底=πr²
3、圆柱的表面积=侧面积+两个底面积(S表=S侧+2S底)
公式: S表=2πr²+2πrh
圆柱体侧面积计算的公式:
圆柱的侧面积=底面的周长×高。
S侧=Ch(C表示底面的周长,h表示圆柱的高)
圆柱(circular cylinder)是由以矩形的一条边所在直线为旋转轴,其余三边绕该旋转轴旋转一周而形成的几何体。它有2个大小相同、相互平行的圆形底面和1个曲面侧面。其侧面展开是矩形。
扩展资料
圆柱的两个完全相同的圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面
的对应点之间的距离叫做高(高有无数条)。
特征:
1、圆柱的底面都是圆,并且大小一样。
2、圆柱两个面之间的垂直距离叫做高,把圆柱的侧面打开,得到一个矩形,这个矩形的一条边就是
圆柱的底面周长。
圆柱的表面积
圆柱的表面积=侧面积+两个底面积(S表=S侧+2S底)
S表=2πr^2
S侧=2πrh
S底=πr^2
参考资料:百度百科-圆柱
圆柱侧面积公式(1/2)(2πr)l=πrl,圆柱高为 h ,底面圆半径为r ,可表示为S侧=ch=兀dh=2兀rh。
圆柱侧面积公式
圆锥的底面半径为r,高为h,母线长为l(l^=r^+h^)
圆锥侧面展开图是一个扇形,半径为l,弧长为2πr
圆锥侧面积=(1/2)(2πr)l=πrl
圆柱高为 h
底面圆半径为r
可表示为
S侧=ch=兀dh=2兀rh
其他重要公式
长方形的周长=(长+宽)×2
正方形的周长=边长×4
长方形的面积=长×宽
正方形的面积=边长×边长
三角形的面积=底×高÷2
平行四边形的面积=底×高
梯形的面积=(上底+下底)×高÷2
直径=半径×2半径=直径÷2
圆的周长=圆周率×直径=
圆周率×半径×2
圆的面积=圆周率×半径×半径
长方体的表面积=
(长×宽+长×高+宽×高)×2
长方体的体积=长×宽×高
正方体的表面积=棱长×棱长×6
正方体的体积=棱长×棱长×棱长
圆柱的侧面积=底面圆的周长×高
圆柱的表面积=上下底面面积+侧面积
圆柱的体积=底面积×高
圆锥的体积=底面积×高÷3
长方体(正方体、圆柱体)
的体积=底面积×高
平面图形
名称符号周长C和面积S
正方形a—边长C=4a
S=a2
长方形a和b-边长C=2(a+b)
S=ab
三角形a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四边形d,D-对角线长
α-对角线夹角S=dD/2·sinα
平行四边形a,b-边长
h-a边的高
α-两边夹角S=ah
=absinα
菱形a-边长
α-夹角
D-长对角线长
d-短对角线长S=Dd/2
=a2sinα
梯形a和b-上、下底长
h-高
m-中位线长S=(a+b)h/2
=mh
圆r-半径
d-直径C=πd=2πr
S=πr2
=πd2/4
扇形r—扇形半径
a—圆心角度数
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形l-弧长
b-弦长
h-矢高
r-半径
α-圆心角的度数S=r2/2·(πα/180-sinα)
=r2arccos[(r-h)/r]-(r-h)(2rh-h2)1/2
=παr2/360-b/2·[r2-(b/2)2]1/2
=r(l-b)/2+bh/2
≈2bh/3
圆环R-外圆半径
r-内圆半径
D-外圆直径
d-内圆直径S=π(R2-r2)
=π(D2-d2)/4
椭圆D-长轴
d-短轴S=πDd/4
立方图形
名称符号面积S和体积V
正方体a-边长S=6a2
V=a3
长方体a-长
b-宽
c-高S=2(ab+ac+bc)
V=abc
棱柱S-底面积
h-高V=Sh
棱锥S-底面积
h-高V=Sh/3
棱台S1和S2-上、下底面积
h-高V=h[S1+S2+(S1S1)1/2]/3
拟柱体S1-上底面积