二项展开式的通项公式是T(r+1)=C(n,r)a^(n-r)b^r T(r+1)表示二项展开式的第r+1项,C(n,r)表示n个数中取r个数的组合^表示次方,表示后面的数是前面的数的上标次方的意思。
二项展开式是依据二项式定理对(a+b)n进行展开得到的式子,由艾萨克·牛顿于1664-1665年间提出。二项展开式是高考的一个重要考点。在二项式展开式中,二项式系数是一些特殊的组合数,与术语“系数”是有区别的。二项式系数最大的项是中间项,而系数最大的项却不一定是中间项。
需要主要的关于通项公式的几个要点有:
1. 项数:总共二项式展开有n+1项,通常通项公式写的是r+1项。
2. 通项公式的第r+1项的二次项系数是Cnk,二次项系数不是项的系数。
3. 如果二项式的幂指数是偶数,中间的一项二次项系数最大。如果是奇数,则最中间2项最大并且相等。
4.指数:a按降幂排列,b按升幂排列,每一项中a、b的指数和为n。
二项公式是指二项式展开式。
二项式展开式是依据二项式定理对(a+b)n进行展开得到的式子,由艾萨克·牛顿于1664-1665年间提出。二项展开式是高考的一个重要考点。
在二项式展开式中,二项式系数是一些特殊的组合数,与术语“系数”是有区别的。二项式系数最大的项是中间项,而系数最大的项却不一定是中间项。
定理的意义
牛顿以二项式定理作为基石发明出了微积分。其在初等数学中应用主要在于一些粗略的分析和估计以及证明恒等式等。
这个定理在遗传学中也有其用武之地,具体应用范围为:推测自交后代群体的基因型和概率、推测自交后代群体的表现型和概率、推测杂交后代群体的表现型分布和概率、通过测交分析杂合体自交后代的性状表现和概率、推测夫妻所生孩子的性别分布和概率、推测平衡状态群体的基因或基因型频率等。