什么是标准形矩阵

roi是什么意思2023-02-06  27

标准形矩阵:每个非零行的第一个非零元素为1,每个非零行的第一个非零元素所在列的其他元素全为零,则是最简形矩阵。如果一个矩阵的左上角为单位矩阵,其他位置的元素都为零。

在矩阵中可画出一条阶梯线,线的下方全为0,每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也就是非零行的第一个非零元,则称该矩阵为行阶梯矩阵。

扩展资料:

两个矩阵的乘法仅当第一个矩阵A的列数和另一个矩阵B的行数相等时才能定义。如A是m×n矩阵和B是n×p矩阵,它们的乘积C是一个m×p矩阵  ,它的一个元素:并将此乘积记为: 

例如:

矩阵的乘法满足以下运算律:

结合律: 

左分配律: 

右分配律: 

矩阵乘法不满足交换律。

在线性代数中,三角矩阵是方形矩阵的一种,因其非零系数的排列呈三角形状而得名。三角矩阵分上三角矩阵和下三角矩阵两种。若  ,则  的矩阵称为上三角矩阵 ,若  ,则  的矩阵称为下三角矩阵 。三角矩阵可以看做是一般方阵的一种简化情形。

矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。

参考资料来源:百度百科——矩阵

标准形矩阵:每个非零行的第一个非零元素为1,每个非零行的第一个非零元素所在列的其他元素全为零,则是最简形矩阵。如果一个矩阵的左上角为单位矩阵,其他位置的元素都为零。

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

相关信息:

数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个已持续几个世纪以来的课题,是一个不断扩大的研究领域。 矩阵分解方法简化了理论和实际的计算。

针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。 无限矩阵发生在行星理论和原子理论中。 无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。


转载请注明原文地址:https://juke.outofmemory.cn/read/2905518.html

最新回复(0)