证明线面垂直有几种方法?

贝斯和吉他2023-02-05  26

5种。

1、线面垂直的判定定理:直线与平面内的两相交直线垂直。

2、面面垂直的性质:若两平面垂直则在一面内垂直于交线的直线必垂直于另一平面。

3、线面垂直的性质:两平行线中有一条与平面垂直,则另一条也与平面垂直。

4、面面平行的性质:一线垂直于二平行平面之一,则必垂直于另一平面。

5、定义法:直线与平面内任一直线垂直。

如果一条直线与一个平面内的任意一条直线都垂直,就说这条直线与此平面互相垂直。是将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法。

扩展资料:

空间内如果两条直线都与第三条直线平行,那么这两条直线平行。(该推论意味着平行线的传递性不仅在平面几何上,在空间几何上也成立。)

过空间内一点(无论是否在已知平面上),有且只有一条直线与平面垂直。下面就讨论如何作出这条唯一的直线。

任选两个面中的一个,在其中做一条直线垂直于两面相交的直线。因为是同一个面内,所以一定能做出来。然后,因为线线垂直,相交线也在另一个面内,做的线在另一面外,所以线面垂直。

直线与平面垂直的判定定理(线面垂直定理):一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

已知m∥n,m⊥α,求证n⊥α。证明:设m∩α=M,n∩α=N。再在m、n上分别另取P、Q。

∵m∥n

∴设m与n确定平面β,且α∩β=MN

过N在α内作AB⊥MN,连接PN。

∵PM⊥α,AB⊂α

∴PM⊥AB

∵PM⊂β,MN⊂β

∴AB⊥β

∵QN⊂β

∴QN⊥AB~~~①

又∵PM⊥α,MN⊂α

∴PM⊥MN

∵PM∥QN

∴QN⊥MN~~~②

∵MN∩AB=N,MN⊂α,AB⊂α

∴QN⊥α

参考资料来源:百度百科——线面垂直

线面垂直的性质定理:

性质定理1:如果一条直线垂直于一个平面,那么该直线垂直于平面内的所有直线。

性质定理2:经过空间内一点,有且只有一条直线垂直已知平面。

性质定理3:如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。

性质定理4:垂直于同一平面的两条直线平行。

推论:空间内如果两条直线都与第三条直线平行,那么这两条直线平行。

当一条直线垂直于一个平面时,则这条直线垂直于平面上的任何一条直线,简称线面垂直则线线垂直。由三垂线定理平面上的一条线和过平面上的一条斜线的影垂直,则这条直线与斜线垂直。

任选两个面中的一个,在其中做一条直线垂直于两面相交的直线。因为是同一个面内,所以一定能做出来。因为线线垂直,相交线也在另一个面内,做的线在另一面外,所以线面垂直。

如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。

如果两条直线垂直于同一个平面,那么这两条直线平行。

线面垂直:一条直线与平面内两条相交直线垂直。

面面垂直:一条直线垂直于一个平面,则过该直线的平面垂直于那个平面。

反证法

设有一直线l与面S上两条相交直线AB、CD都垂直,则l⊥面S

假设l不垂直于面S,则要么l∥S,要么斜交于S且夹角不等于90。

当l∥S时,则l不可能与AB和CD都垂直。这是因为当l⊥AB时,过l任意作一个平面R与S交于m,则由线面平行的性质可知m∥l

∴m⊥AB

又∵l⊥CD

∴m⊥CD

∴AB∥CD,与已知条件矛盾。

当l斜交S时,过交点在S内作一直线n⊥l,则n和l构成一个新的平面T,且T和S斜交(若T⊥S,则n是两平面交线。由面面垂直的性质可知l⊥S,与l斜交S矛盾)。

∵l⊥AB

∴AB∥n

∵l⊥CD

∴CD∥n

∴AB∥CD,与已知条件矛盾。

综上,l⊥S

以上内容参考:百度百科-线面垂直


转载请注明原文地址:https://juke.outofmemory.cn/read/2898268.html

最新回复(0)