1、梯形周长公式C=上底+下底+两个腰长
2、等腰梯形的周长公式:上底+下底+2腰
3、梯形面积公式:S=1/2(上底+下底)*高
4、梯形的面积公式: 中位线×高
5、对角线互相垂直的梯形面积为:对角线×对角线÷2
性质
1.等腰梯形的两条腰相等。
2.等腰梯形在同一底上的两个底角相等。
3.等腰梯形的两条对角线相等。
4.等腰梯形是轴对称图形,对称轴是上下底中点的连线所在直线(过两底中点的直线)。
判定
①两腰相等的梯形是等腰梯形;
②同一底上的两个角相等的梯形是等腰梯形;
③对角线相等的梯形是等腰梯形。
设直角梯形上边长为a,下边长为b,高为h,则:
1、其重心距离下底边b的高度为:
2、其重心距离直角边的距离为:
在直角梯形ABCD中,AD//BC,∠B=90°,则∠A=90°,∠C+∠D=180°。
重要性质:直角梯形斜腰的中点到直角腰的二端点距离相等。
扩展资料:
若一个三角形的三边a,b,c ( ) 满足:
1、 ,则这个三角形是锐角三角形;
2、 ,则这个三角形是直角三角形;
3、 ,则这个三角形是钝角三角形。
公式:
1、 (面积=底×高÷2。其中,a是三角形的底,h是底所对应的高)注释:三边均可为底,应理解为:三边与之对应的高的积的一半是三角形的面积。这是面积法求线段长度的基础。
2、 (其中,三个角为∠A,∠B,∠C,对边分别为a,b,c。参见三角函数)
3、 (l为高所在边中位线)
4、 (海伦公式),其中
参考资料:百度百科——梯形
梯形的面积:
用“S”表示梯形的面积,“a”表示梯形的上底,“c”表示梯形的下底,“L”表示梯形的棱长,“h”表示梯形的高。
梯形的面积公式=(上底+下底)×高÷2,面积公式用字母表示:S=(a+c)×h÷2。
梯形的面积公式= 中位线×高,用字母表示:S=L×h。
对角线互相垂直的梯形面积为:S=对角线×对角线÷2。
求梯形的面积的例题:
例如:梯形的上底为10米,下底为20米,高为30米,求梯形的面积。
解:因为S=(a+c)×h÷2=(10+20)×30÷2=450(平方米)
等腰梯形的例题:
如图,△ABC中,AB=AC,BD、CE分别为∠ABC、∠ACB的平分线。求证:四边形EBCD是等腰梯形。
分析:欲证四边形EBCD是等腰梯形,解题思路是证ED//BC,BE=CD,由已知条件易证△BCD≌△CBE得到EB=DC,从而AE=AD,运用等腰三角形的性质可证ED//BC。
证明:∵AB=AC
∴∠ABC=∠ACB
∴∠DBC=∠ECB=1/2∠ABC
∴△EBC≌△DCB(A.S.A)
∴BE=CD
∴AB-BE=AC-CD,即AE=AD
∴∠ABC=∠AED
∴ED//BC
又∵EB与DC交于点A,即EB与DC不平行
∴四边形EBCD是梯形,又BE=DC
∴四边形EBCD是等腰梯形
梯形的面积公式:
1、设梯形的上底长为a,下底长为b,高为h,面积为S,则梯形的面积公式为:S=(a+b)×h×(1÷2)。
2、当梯形的对角线互相垂直时,有计算公式:梯形的面积=对角线×对角线÷2。
3、若已知梯形中位线长度为L,根据上述梯形性质2,则梯形面积公式为:S=L×h(S:表示提醒的面积,h:表示梯形的高)。
扩展资料:
梯形的常用辅助线:
1、作高(根据实际题目确定);
2、平移一腰;
3、平移对角线;
4、反向延长两腰交于一点;
5、取一腰中点,另一腰两端点连接并延长;
6、取两底中点,过一底中点做两腰的平行线。
7、取两腰中点,连接,作中位线。