直径是通过圆心且两个端点都在圆上任意一点的线段.一般用字母d(diameter)表示。直径所在的直线是圆的对称轴。直径的两个端点在圆上,圆心是直径的中点。直径将圆分为面积相等的两部分,中间的线段就叫直径(每一个部分成为一个半圆)。
直径,是指通过一平面图形或立体(如圆、圆锥截面、球、立方体)中心到边上两点间的距离,通常用字母“d”表示。连接圆周上两点并通过圆心的线段称圆直径,连接球面上两点并通过球心的直线称球直径。
扩展资料
直径的性质:在同一个圆中直径是最长的弦。
证明:设AB是⊙O的直径,CD是非直径的任意一条弦,则可证明AB>CD恒成立。
连接OC、OD,根据圆的定义,OA=OB=OC=OD=半径
∵CD不是直径
∴CD不经过圆心O,即O、C、D三点可以构成三角形
在△OCD中,根据三角形三边关系可知OC+OD>CD
∵OA=OB=OC=OD
∴OA+OB>CD
即AB>CD
圆的直径=2×半径;圆的直径=周长÷圆周率。根据题目给出的条件来计算,不同的条件,计算方法是不一样的,比如给出圆的周长或者给出半径,都可以算出圆的直径。
半圆的面积:S半圆=(πr²;)/2
圆环面积:S大圆-S小圆=π(R²-r²)(R为大圆半径,r为小圆半径)
圆的周长:C=2πr或c=πd
半圆的周长:d+(πd)/2或者d+πr
圆的周长:C=2πr或c=πd
半圆的周长:d+(πd)/2或者d+πr
通过圆心并且两端都在圆上的线段叫做直径,字母表示为d(diameter)。直径所在的直线是圆的对称轴。
圆的直径 d=2r
另:连接圆心和圆上的任意一点的线段叫做半径,字母表示为r(radius)
扩展资料:
一、弦
1.连接圆上任意两点的线段叫做弦(chord).在同一个圆内最长的弦是直径。直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。
二、弧
1、圆上任意两点间的部分叫做圆弧,简称弧(arc)以“⌒”表示。
2、大于半圆的弧称为优弧,小于半圆的弧称为劣弧,所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。
3、在同圆或等圆中,能够互相重合的两条弧叫做等弧。
三、角
1、顶点在圆心上的角叫做圆心角(central angle)。
2、顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角等于相同弧所对的圆心角的一半。
四、圆周率
圆周长度与圆的直径长度的比值叫做圆周率。它是一个无限不循环小数,通常用字母 表示,
≈3.1415926535......计算时通常取近似值3.14。我们可以说圆的周长是直径的π倍,或大约3.14倍,不能直接说圆的周长是直径的3.14倍。
五、形
1、由弦和它所对的一段弧围成的图形叫做弓形。
2、由圆心角的两条半径和圆心角所对应的一段弧围成的图形叫做扇形(sector)。