怎么证明面面平行?

宝泉风景区2023-02-03  17

一般有三种方法:

一、如果一个平面内有两条相交直线与都平行于另一个平面,那么这两个平面平行。

二、如果两个平面都垂直同一条直线,那么这两个平面是互相平行的。

三、根据两个平面平行的定义,证明两个平面没有公共点。

扩展资料:

1、面对面平行:

这意味着两个平面是平行的。如果两个平面没有共同点,则称它们平行。如果两个平面的垂线是平行的,那么这两个平面就是平行的。如果一个平面中的两条相交线平行于另一个平面,那么这两个平面也是平行的。

2、平面:

指平面上任意两点之间的直线落在该平面上,这是二维零曲率延伸,平面与任何与其相似的平面相交为一条直线。它是从生活中的对象中抽象出来的数学概念,但又与生活中的对象有本质的区别。不考虑尺寸、宽度和厚度,具有无限延性。这种平面性也与直线的无限延性有关。

面面平行的判定定理为如果一个平面内有两条相交直线与都平行于另一个平面,那么这两个平面平行;如果两个平面都垂直同一条直线,那么这两个平面是互相平行的。

面面平行证明方法

如果一个平面内有两条相交直线与另一个平面平行,那么这两个平面平行。

几何语言:a⊂α,b⊂α,且a∩b=A,a∥β,b∥β。则α∥β。

反证法证明:假设这两个平面不平行,那么它们相交,设交线为l。

∵a∥β

∴a与β无交点

同理,b与β无交点

∵l是两个平面的交线,l⊂β

∴a与l无交点,b与l无交点,那么它们平行或异面。

又∵a⊂α,b⊂α,l⊂α,即它们不异面

∴a∥l,b∥l

∴a∥b

这与已知条件a∩b=A矛盾,因此假设不成立,α∥β

向量法证明:设直线a,b的方向向量为a,b,平面β的法向量为p。

∵a∥β,b∥β

∴a⊥p,b⊥p,即a·p=0,b·p=0

∵a,b是α内两条相交直线

∴设有任一向量c⊂α,根据平面向量基本定理可知,存在一对有序数对(x,y)使得c=xa+yb

那么p·c=p·(xa+yb)=xp·a+yp·b=0

即p⊥c

由c的任意性可知p与α内任一向量都垂直,即p也是α的法向量。

∴α∥β


转载请注明原文地址:https://juke.outofmemory.cn/read/2885259.html

最新回复(0)