请问:什么是叉乘?

豪门契约冷婚2023-02-02  37

叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。

|向量c|=|向量a×向量b|=|a||b|sin<a,b>

向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。

因此

向量的外积不遵守乘法交换率,因为向量a×向量b= -

向量b×向量a

在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。

将向量用坐标表示(三维向量),

若向量a=(a1,b1,c1),向量b=(a2,b2,c2),

向量a×向量b=

| i j k |

|a1 b1 c1|

|a2 b2 c2|

=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)

(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。

数学中,既有大小又有方向且遵循平行四边形法则的量叫做向量(vector)。

向量

向量

有方向与大小,分为自由向量与固定向量。

数学中,把只有大小但没有方向的量叫做数量,物理中称为标量。例如距离、质量、密度、温度等。

注:在线性代数中(实数空间/复数空间)的向量是指n个实数/复数组成的有序数组,称为n维向量。α=(a1,a2,…,an) 称为n维向量。其中ai称为向量α的第i个分量。

("a1"的"1"为a的下标,"ai"的"i"为a的下标,其他类推)

在编程语言中,也存在向量。向量有起点,有方向。常用一个带箭头的线段表示。

二维向量叉乘公式a(x1,y1),b(x2,y2),则a×b=(x1y2-x2y1),不需要证明的就是定义的运算。

三维叉乘是行列式运算,也是叉积的定义,把第三维看做0代入就行了。

代数规则

1、反交换律:a×b=-b×a

2、加法的分配律:a×(b+c)=a×b+a×c。

3、与标量乘法兼容:(ra)×b=a×(rb)=r(a×b)。

4、不满足结合律,但满足雅可比恒等式:a×(b×c)+b×(c×a)+c×(a×b)=0。

5、分配律,线性性和雅可比恒等式别表明:具有向量加法和叉积的R3构成了一个李代数。

6、两个非零向量a和b平行,当且仅当a×b=0。


转载请注明原文地址:https://juke.outofmemory.cn/read/2877802.html

最新回复(0)