互质数是什么意思

blv2023-02-02  16

互质数意思是两个或多个整数的公因数只有1的非零自然数。

公因数只有1的两个数,叫做互质数。不算它本身最大的公因数是1的两个自然数,叫做互质数。又是两个数是最大公因数只有1的两个数是互质数。这里所说的两个数是指除0外的所有自然数。公因数只有1,不能误说成没有公因数。

三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的,如8、9。两个整数正整数N,除了1以外,没有其他公约数时,称这两个数为互质数,互质数的概率是6/π^2。

互质数规律判断法

根据互质数的定义,可总结出一些规律,利用这些规律能迅速判断一组数是否互质。

两个不相同的质数一定是互质数。如:7和11、17和31是互质数。

两个连续的自然数一定是互质数。如:4和5、13和14是互质数。

相邻的两个奇数一定是互质数。如:5和7、75和77是互质数。

1和其他所有的自然数一定是互质数。如:1和4、1和13是互质数。

两个数中的较大一个是质数,这两个数一定是互质数。如:3和19、16和97是互质数。

两个数中的较小一个是质数,而较大数是合数且不是较小数的倍数,这两个数一定是互质数。如:2和15、7和54是互质数。

较大数比较小数的2倍多1或少1,这两个数一定是互质数。如:13和27、13和25是互质数。

小学数学教材对互质数是这样定义的:公因数只有1的两个自然数,叫做互质数。

这里所说的“两个数”是指除0外的所有自然数。

“公因数只有 1”,不能误说成“没有公因数。”

(1)两个不相同质数一定是互质数。例如,2与7、13与19。

(2)一个质数如果不能整除另一个合数,这两个数为互质数。例如,3与10、5与 26。

(3)1不是质数也不是合数。

(4)相邻的两个自然数是互质数。例如 15与 16。

(5)相邻的两个奇数是互质数。例如 49与 51。

(6)大数是质数的两个数是互质数。例如97与88。

(7)小数是质数,大数不是小数的倍数的两个数是互质数。例如 7和 16。

(8)2和任何奇数是互质数。如2和87。

扩展资料:

规律判断法

根据互质数的定义,可总结出一些规律,利用这些规律能迅速判断一组数是否互质。

(1)两个不相同的质数一定是互质数。如:7和11、17和31是互质数。

(2)两个连续的自然数一定是互质数。如:4和5、13和14是互质数。

(3)相邻的两个奇数一定是互质数。如:5和7、75和77是互质数。

(4)1和其他所有的自然数一定是互质数。如:1和4、1和13是互质数。

(5)两个数中的较大一个是质数,这两个数一定是互质数。如:3和19、16和97是互质数。

(6)两个数中的较小一个是质数,而较大数是合数且不是较小数的倍数,这两个数一定是互质数。如:2和15、7和54是互质数。

(7)较大数比较小数的2倍多1或少1,这两个数一定是互质数。如:13和27、13和25是互质数。

分解判断法

如果两个数都是合数,可先将两个数分别分解质因数,再看两个数是否含有相同的质因数。如果没有,这两个数是互质数。如:130和231,先将它们分解质因数:130=2×5×13,231=3×7×11。分解后,发现它们没有相同的质因数,则130和231是互质数。

求差判断法

如果两个数相差不大,可先求出它们的差,再看差与其中较小数是否互质。如果互质,则原来两个数一定是互质数。如:194和201,先求出它们的差,201-194=7,因7和194互质,则194和201是互质数。

求商判断法

用大数除以小数,如果除得的余数与其中较小数互质,则原来两个数是互质数。如:317和52,317÷52=6……5,因余数5与52互质,则317和52是互质数。

互质数即两个或多个整数的公因数只有1的非零自然数。公因数只有1的两个非零自然数,叫做互质数。

互质数具有以下定理:

(1)两个数的公因数只有1的两个非零自然数,叫做互质数;举例:2和3,公因数只有1,为互质数;

(2)多个数的若干个最大公因数只有1的正整数,叫做互质数;

(3)两个不同的质数,为互质数;

(4)1和任何自然数互质。两个不同的质数互质。一个质数和一个合数,这两个数不是倍数关系时互质。不含相同质因数的两个合数互质;

(5)任何相邻的两个数互质;

(6)任取出两个正整数他们互质的概率(最大公约数为一)为6/π^2。

扩展资料:

因为一和任何一个非零的自然数互质,一乘任何非零自然数,所得的积不一定是合数,如1与17互质,1×17=17,17不是合数。

公约数只有1的两个数叫做互质数,根据互质数的概念可以对一组数是否互质进行判断,如9和11的公约数只有1,则它们是互质数。


转载请注明原文地址:https://juke.outofmemory.cn/read/2877378.html

最新回复(0)