核磁是什么

腊梅树2023-02-02  15

核磁共振是磁矩不为零的原子核,在外磁场作用下自旋能级发生蔡曼分裂,共振吸收某一定频率的射频辐射的物理过程。并不是是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进动核和能级分裂。在交变磁场作用下,自旋核会吸收特定频率的电磁波,从较低的能级跃迁到较高能级。这种过程就是核磁共振。

问题一:什么叫核磁共振 基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体伐的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。

医学影像核磁共振检查应用:

1、颅脑病变:脑血管病、颅内肿瘤、脑内炎性病变、颅脑外伤、先天性颅脑畸形、脑变性疾病及脑白质病变、鼻部、眼眶病变。

2、脊柱与脊髓病变:脊髓空洞症、脊髓损伤、脊髓肿瘤等。

3、颈部:淋巴结病变、喉部病变、甲状腺肿瘤等。

4、胸部:纵隔及肺门肿块、胸腺病变、肺癌后期、胸膜病变等。

5、腹部区:肝囊肿、肝硬化、肝肿瘤、胆囊炎等。

6、盆腔:子宫卵巢肿瘤、前列腺肥大、前列腺肿瘤及精索病变等。

7、肌肉骨骼系统:骨外伤、肿瘤、膝关节及半月板损伤等。

问题二:什么叫“核磁共振”?? 核磁共振(MRI)又叫核磁共振成像技术。是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。

磁矩是由许多原子核所具有的内部角动量或自旋引起的,自1940年以来研究磁矩的技术已得到了发展。物理学家正在从事的核理论的基础研究为这一工作奠定了基础。1933年,G・O・斯特恩(Stern)和I・艾斯特曼(Estermann)对核粒子的磁矩进行了第一次粗略测定。美国哥伦比亚的I・I・拉比(Rabi生于1898年)的实验室在这个领域的研究中获得了进展。这些研究对核理论的发展起了很大的作用。

当受到强磁场加速的原子束加以一个已知频率的弱振荡磁场时原子核就要吸收某些频率的能量,同时跃迁到较高的磁场亚层中。通过测定原子束在频率逐渐变化的磁场中的强度,就可测定原子核吸收频率的大小。这种技术起初被用于气体物质,后来通过斯坦福的F.布络赫(Bloch生于1905年)和哈佛大学的E・M・珀塞尔(Puccell生于1912年)的工作扩大应用到液体和固体。布络赫小组第一次测定了水中质子的共振吸收,而珀塞尔小组第一次测定了固态链烷烃中质子的共振吸收。自从1946年进行这些研究以来,这个领域已经迅速得到了发展。物理学家利用这门技术研究原子核的性质,同时化学家利用它进行化学反应过程中的鉴定和分析工作,以及研究络合物、受阻转动和固体缺陷等方面。1949年,W・D・奈特证实,在外加磁场中某个原子核的共振频率有时由该原子的化学形式决定。比如,可看到乙醇中的质子显示三个独立的峰,分别对应于CH3、CH2和OH键中的几个质子。这种所谓化学位移是与价电子对外加磁场所起的屏蔽效应有关。

(1)70年代以来核磁共振技术在有机物的结构,特别是天然产物结构的阐明中起着极为重要的作用。目前,利用化学位移、裂分常数、H―′HCosy谱等来获得有机物的结构信息已成为常规测试手段。近20年来核磁共振技术在谱仪性能和测量方法上有了巨大的进步。在谱仪硬件方面,由于超导技术的发展,磁体的磁场强度平均每5年提高1.5倍,到80年代末600兆周的谱仪已开始实用,由于各种先进而复杂的射频技术的发展,核磁共振的激励和检测技术有了很大的提高。此外,随着计算机技术的发展,不仅能对激发核共振的脉冲序列和数据采集作严格而精细的控制,而且能对得到的大量的数据作各种复杂的变换和处理。在谱仪的软件方面最突出的技术进步就是二维核磁共振(2D―NMR)方法的发展。它从根本上改变了NMR技术用于解决复杂结构问题的方式,大大提高了NMR技术所提供的关于分子结构信息的质和量,使NMR技术成为解决复杂结构问题的最重要的物理方法。

①2D―NMR技术能提供分子中各种核之间的多种多样的相关信息,如核之间通过化学键的自旋偶合相关,通过空间的偶极偶合(NOE)相关,同种核之间的偶合相关,异种核之间的偶合相关,核与核之间直接的相关和远程的相关等。根据这些相关信息,就可以把分子中的原子通过化学键或空间关系相互连接,这不仅大大简化了分子结构的解析过程,并且使之成为直接可靠的逻辑推理方法。

②2D―NMR的发展,不仅大大提高了大量共振信号的分离能力,减少了共振信号间的重叠,并且能提供许多1D―NMR波谱无法提供的结构信息,如互相重叠的共振信号中每一组信......>>

问题三:CT和核磁共振原理有啥区别,适用范围分别是什么 CT扫描仪可以用于对人体的全身扫描,而核磁共振扫描仪则主要用于对人体的软组织的扫描。通过这两种仪器,医生可以获得详细的三维的人体剖面图象,清楚地看到人体组织中的细微的变化,为科学的诊断提供有力的证据。CT扫描仪和核磁共振扫描仪的外形十分相似,它们所获得的三维图像也很相似,但是应该指出这两种仪器的成像原理确是完全不同的。CT扫描仪的原理相对比较简单,它是利用不同密度的人体组织对X射线有着不同的吸收率的原理而设计的。大家都知道X射线是一种波长很短的电磁波,它沿着直线传播,由于它的能量很高,所以它可以穿透人体的所有组织。由于人体不同组织的密度不同,所以它们对X射线的吸收率也各不相同。如果用平行的或者是向外成一定角度发散的X射线穿越人体,然后对感光胶片进行曝光,这样就可以清楚地看见人体的骨肋和一些软组织的分布情况。这就是最常用的X射线透视的基本原理。X射线透视是在二十世纪初期所发明的,它的发明为医学的诊断提供了一个极为重要的信息来源。但是遗憾的是X射线透视所得到的是一个平面图形,由于人体组织的重叠会引起对X射线吸收的互相叠加的作用,所以在X射线透视的照片上很多的细节是看不到的。为了了解一些三维的细节,就必须从不同的角度进行X射线透视,而要想获得人体的三维图象则是不可能的。为了获得人体组织的细节,为了获得人体组织的三维图象,这只有依靠于现代的CT扫描仪和核磁共振扫描仪了。CT扫描仪是1971年由洪斯非尔德(Hounsfield)发明的,洪斯非尔德并因此而获得1979年的诺贝尔奖。CT扫描仪和X射线透视有很多相同的地方,但是也有很多不同的地方。相同的是它们都是以人体组织中不同密度的器官对X射线有着不同的吸收率作为仪器设计的基本原理。它们所用的射线源可以是波阵面为平面的X射线面源,也可以是波阵面是球面发散的X射线点源。而它们之间不同的地方是:1)X射线透视的接收装置是一张胶片,而CT扫描仪所使用的则是一组园弧形的电子接收装置,这种装置一般是由用准直器分隔开的晶体所构成。这个电子接收装置正好位于X射线源的正对面。2)X射线透视工作时它的射线源和胶片均处在固定的位置上,而CT扫描在工作时不但所扫描的人体会在扫描仪的园孔内来回移动,而且X射线源和电子接收装置也会在CT扫描仪的园环上高速地旋转。在CT扫描仪上这两个方向上的运动都有精密的编码器来监察。3)这两个仪器的最后一个不同点就是X射线透视不需要进行计算机处理,而CT扫描仪则需要使用计算机对图象进行较为复杂的计算和处理,从而来形成三维的人体组织的详细图象。为了对CT扫描仪的原理有进一步的了解,有必要要对X射线透视的透射吸收有所了解。如果一种材料的吸收系数为 ,则X射线在材料中经过一定的路程 后,该材料对X射线的透射率则为 。当X胶片或者接收器的平面平行于X射线的发射平面时,则X射线经过人体各部分的吸收以后,在胶片上各个点上的透射率的分布就是:(1)透射率和X射线的源强度的乘积就是X射线到达感光胶片或者接收器时的能量。假设X射线的波阵面是一个平面,X射线的原有的强度为 ,考虑到在接收器上的背景噪声为 ,如果将介质的吸收系数进行离散处理, 为介质中每一个离散点的长度,则最后落在接收器上相应的点上的辐射强度为:(2)考虑到X射线的散射和其它因素,这个公式经过简单的变换有:(3)注意当X射线为发散形传播时,我们还要注意X射线的自身强度在传播中也将不断衰减。X射线的自身强度和X射线传播的距离的平方成反比。从上面的公式看,X射线在经过吸收系数不同的结构以后,所产生的信息可以形成一个线性方程组。CT扫描仪一般......>>

问题四:核磁共振是什么? 核磁共振现象来源于原子核的自旋角动量在外加磁场作用下的进动。

核磁共振

根据量子力学原理,原子核与电子一样,也具有自旋角动量,其自旋角动量的具体数值由原子核的自旋量子数决定,实验结果显示,不同类型的原子核自旋量子数也不同:

质量数和质子数均为偶数的原子核,自旋量子数为0 ,即I=0,如12C,16O,32S等,这类原子核没有自旋现象,称为非磁性核。质量数为奇数的原子核,自旋量子数为半整数 ,如1H,19F,13C等,其自旋量子数不为0,称为磁性核。质量数为偶数,质子数为奇数的原子核,自旋量子数为整数,这样的核也是磁性核。但迄今为止,只有自旋量子数等于1/2的原子核,其核磁共振信号才能够被人们利用,经常为人们所利用的原子核有: 1H、11B、13C、17O、19F、31P ,由于原子核携带电荷,当原子核自旋时,会由自旋产生一个磁矩,这一磁矩的方向与原子核的自旋方向相同,大小与原子核的自旋角动量成正比。将原子核置于外加磁场中,若原子核磁矩与外加磁场方向不同,则原子核磁矩会绕外磁场方向旋转,这一现象类似陀螺在旋转过程中转动轴的摆动,称为进动。进动具有能量也具有一定的频率。

原子核进动的频率由外加磁场的强度和原子核本身的性质决定,也就是说,对于某一特定原子,在一定强度的的外加磁场中,其原子核自旋进动的频率是固定不变的。

原子核发生进动的能量与磁场、原子核磁矩、以及磁矩与磁场的夹角相关,根据量子力学原理,原子核磁矩与外加磁场之间的夹角并不是连续分布的,而是由原子核的磁量子数决定的,原子核磁矩的方向只能在这些磁量子数之间跳跃,而不能平滑的变化,这样就形成了一系列的

核磁共振氢谱

能级。当原子核在外加磁场中接受其他来源的能量输入后,就会发生能级跃迁,也就是原子核磁矩与外加磁场的夹角会发生变化。这种能级跃迁是获取核磁共振信号的基础。

为了让原子核自旋的进动发生能级跃迁,需要为原子核提供跃迁所需要的能量,这一能量通常是通过外加射频场来提供的。根据物理学原理当外加射频场的频率与原子核自旋进动的频率相同的时候,射频场的能量才能够有效地被原子核吸收,为能级跃迁提供助力。因此某种特定的原子核,在给定的外加磁场中,只吸收某一特定频率射频场提供的能量,这样就形成了一个核磁共振信号.

编辑本段

技术应用

NMR技术即核磁共振谱技术,是将核磁共振现象应用于分子结构测定的一项技术。对于有机分子结构测定来说,核磁共振谱扮演了非常重要的角色,核憨共振谱与紫外光谱、红外光谱和质谱一起被有机化学家们称为“四大名谱”。目前对核磁共振谱的研究主要集中在1H和13C两类原子核的图谱。

对于孤立原子核而言,同一种原子核在同样强度的外磁场中,

核磁共振碳谱

只对某一特定频率的射频场敏感。但是处于分子结构中的原子核,由于分子中电子云分布等因素的影响,实际感受到的外磁场强度往往会发生一定程度的变化,而且处于分子结构中不同位置的原子核,所感受到的外加磁场的强度也各不相同,这种分子中电子云对外加磁场强度的影响,会导致分子中不同位置原子核对不同频率的射频场敏感,从而导致核磁共振信号的差异,这种差异便是通过核磁共振解析分子结构的基础。原子核附近化学键和电子云的分布状况称为该原子核的化学环境,由于化学环境影响导致的核磁共振信号频率位置的变化称为该原子核的化学位移。

耦合常数是化学位移之外核磁共振谱提供的的另一个重要信息,所谓耦合指的是临近原子核自旋角动量的相互影响,这种原子核自旋角动量的相互作用会改变原子核自旋在外磁场中进动的能级分布状况......>>

问题五:核磁共振能检查什么? 磁共振成像术(MRI)也有称之为核磁共振,英文缩写为MRI。其基本原理是在强大磁场的作用下,记录组织器官内氢原子的原子核运动,经计算和处理后获得检查部位图像。

检查目的:颅脑及脊柱、脊髓病变,五官科疾病,心脏疾病,纵膈肿块,骨关节和肌肉病变,子宫、卵巢、膀胱、前列腺、肝、肾、胰等部位的病变。

优点:1.MRI对人体没有损伤;

2.MRI能获得脑和脊髓的立体图像,不像CT那样一层一层地扫描而有可能漏掉病变部位;

3.能诊断心脏病变,CT因扫描速度慢而难以胜任;

4.对膀胱、直肠、子宫、 *** 、骨、关节、肌肉等部位的检查优于CT。

缺点:1.和CT一样,MRI也是影像诊断,很多病变单凭MRI仍难以确诊,不像内窥镜可同时获得影像和病理两方面的诊断;

2.对肺部的检查不优于X线或CT检查,对肝脏、胰腺、肾上腺、前列腺的检查不比CT优越,但费用要高昂得多;

3.对胃肠道的病变不如内窥镜检查;

4.体内留有金属物品者不宜接受MRI。

注意事项:1.检查前须取下一切含金属的物品,如金属手表、眼镜、项链、义齿、义眼、钮扣、皮带、助听器等;

2.装有心脏起搏器的患者禁止做MRI检查;

3.做盆腔部位检查时,需要膀胱充盈,检查前不得解小便。有金属节育环者须取出才能进行;

4.体内有弹片残留者,一般不能做MRI;

5.手术后留有金属银夹的病人,是否能做MRI检查要医生慎重决定;

6.胸腹部检查时,要保持呼吸平稳,切忌检查期间咳嗽或进行吞咽动作;

7.MRI对饮食、药物没有特别要求;

8. 检查时要带上已做过的其他检查材料,如B超、X线、CT的报告。

问题六:什么是磁共振成像 磁共振成像(MRI)是根据有磁距的原子核在磁场作用下,能产生能级间的跃迁的原理而采用的一项新检查技术,MRI有助于检查癫痫患者脑的能量状态和脑血流情况,对变性病诊断价值很大。MRI是通过体外高频磁场作用,由体内物质向周围环境辐射能量产生信号实现的,成像过程与图像重建和CT相近,只是MRI既不靠外界的辐射、吸收与反射,也不靠放射性物质在体内的γ辐射,而是利用外磁场和物体的相互作用来成像,高能磁场对人体无害。所以MRI检查是安全的。临床常用MRI检查发现继发性癫痫的脑结构变化,如果临床对癫痫综合征分类不明,MRI能明确该患者是否由脑结构改变所致,颅内肿瘤常引起癫痫,MRI对脑内低度星形胶质细胞瘤、神经节、神经胶质瘤、动静脉畸形和血肿等的诊断确认率极高。MRI能清楚地显示癫痫患者的脑萎缩,对脑实质和脑脊液的显示度极好。

MRI与CT比较,其主要优点是:

①离子化放射对脑组织无放射性损害,也无生物学损害。

②可以直接做出横断面、矢状面、冠状面和各种斜面的体层图像。

③没有CT图像中那种射线硬化等伪影。

④不受骨像干扰,对后颅凹底和脑干等处的小病变能满意显示,对颅骨顶部和矢状窦旁、外侧裂结构和广泛转移的肿瘤有很高的诊断价值。

⑤显示疾病的病理过程较CT更广泛,结构更清楚。能发现CT显示完全正常的等密度病灶,特别能发现脱髓鞘性疾病、脑炎、感染性脱髓鞘、缺血性病变及低度胶质瘤。

问题七:核磁共振检查什么 核磁共振检查:

一、全身软组织病变:无论来源于神经、血管、淋巴管、肌肉、结缔组织的肿瘤、感染、变性病变等,皆可做出较为准确的定位、定性的诊断。

二、骨与关节:骨内感染、肿瘤、外伤的诊断与病变范围,尤其对一些细微的改变如骨挫伤等有较大价值,关节内软骨、韧带、半月板、滑膜、滑液囊等病变及骨髓病变有较高诊断价值。

三、胸部病变:纵隔内的肿物、淋巴结以及胸膜病变等,可以显示肺内团块与较大气管和血管的关系等。

四、盆腔脏器;子宫肌瘤、子宫其它肿瘤、卵巢肿瘤,盆腔内包块的定性定位,直肠、前列腺和膀胱的肿物等。

五、腹部器官:肝癌、肝血管瘤及肝囊肿的诊断与鉴别诊断,腹内肿块的诊断与鉴别诊断,尤其是腹膜后的病变。

六、神经系统病变:脑梗塞、脑肿瘤、炎症、变性病、先天畸形、外伤等,为应用最早的人体系统,目前积累了丰富的经验,对病变的定位、定性诊断较为准确、及时,可发现早期病变。

七、心血管系统:可用于心脏病、心肌病、心包肿瘤、心包积液以及附壁血栓、内膜片的剥离等的诊断。

问题八:磁共振是什么意思? 原来叫核磁共振,就是在你身体上施加一个磁场,使你身体里的氢原子核都朝向磁场方向,然后撤掉这个磁场,捕捉这些原子核返回原来状态所释放出的能量,由此就知道你身体里的水份分布了,因为不同脏器的水含量都珐同,所以就能清晰的区分出不同脏器了,说白了就是个水成像。

核磁共振(MRI)又叫核磁共振成像技术。是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。

磁矩是由许多原子核所具有的内部角动量或自旋引起的,自1940年以来研究磁矩的技术已得到了发展。物理学家正在从事的核理论的基础研究为这一工作奠定了基础。1933年,G·O·斯特恩(Stern)和I·艾斯特曼(Estermann)对核粒子的磁矩进行了第一次粗略测定。美国哥伦比亚的I·I·拉比(Rabi生于1898年)的实验室在这个领域的研究中获得了进展。这些研究对核理论的发展起了很大的作用。

当受到强磁场加速的原子束加以一个已知频率的弱振荡磁场时原子核就要吸收某些频率的能量,同时跃迁到较高的磁场亚层中。通过测定原子束在频率逐渐变化的磁场中的强度,就可测定原子核吸收频率的大小。这种技术起初被用于气体物质,后来通过斯坦福的F.布络赫(Bloch生于1905年)和哈佛大学的E·M·珀塞尔(Puccell生于1912年)的工作扩大应用到液体和固体。布络赫小组第一次测定了水中质子的共振吸收,而珀塞尔小组第一次测定了固态链烷烃中质子的共振吸收。自从1946年进行这些研究以来,这个领域已经迅速得到了发展。物理学家利用这门技术研究原子核的性质,同时化学家利用它进行化学反应过程中的鉴定和分析工作,以及研究络合物、受阻转动和固体缺陷等方面。1949年,W·D·奈特证实,在外加磁场中某个原子核的共振频率有时由该原子的化学形式决定。比如,可看到乙醇中的质子显示三个独立的峰,分别对应于CH3、CH2和OH键中的几个质子。这种所谓化学位移是与价电子对外加磁场所起的屏蔽效应有关。

(1)70年代以来核磁共振技术在有机物的结构,特别是天然产物结构的阐明中起着极为重要的作用。目前,利用化学位移、裂分常数、H—′HCosy谱等来获得有机物的结构信息已成为常规测试手段。近20年来核磁共振技术在谱仪性能和测量方法上有了巨大的进步。在谱仪硬件方面,由于超导技术的发展,磁体的磁场强度平均每5年提高1.5倍,到80年代末600兆周的谱仪已开始实用,由于各种先进而复杂的射频技术的发展,核磁共振的激励和检测技术有了很大的提高。此外,随着计算机技术的发展,不仅能对激发核共振的脉冲序列和数据采集作严格而精细的控制,而且能对得到的大量的数据作各种复杂的变换和处理。在谱仪的软件方面最突出的技术进步就是二维核磁共振(2D—NMR)方法的发展。它从根本上改变了NMR技术用于解决复杂结构问题的方式,大大提高了NMR技术所提供的关于分子结构信息的质和量,使NMR技术成为解决复杂结构问题的最重要的物理方法。

①2D—NMR技术能提供分子中各种核之间的多种多样的相关信息,如核之间通过化学键的自旋偶合相关,通过空间的偶极偶合(NOE)相关,同种核之间的偶合相关,异种核之间的偶合相关,核与核之间直接的相关和远程的相关等。根据这些相关信息,就可以把分子中的原子通过化学键或空间关系相互连接,这不仅大大简化了分子结构的解析过程,并且使之成为直接可靠的逻辑推理方法。

②2D—NMR的发展,不仅大大提高了大量共振信号的分离能力,减少了共振信号间的重叠,并且能提供许多1D—NMR波谱无法提供的结构信息,如互相重叠的共振信号中每一组信号的精细裂分形态,准确的耦合常数,确定耦合常数的符号和区分直接和远程耦合等。

③运用2D—NMR技术解析分子结构的过程就是NMR信号的归属过程,解析过程的完成也就同时完成了NMR信号的归属。完整而准确的数据归属不仅为分子结构测定的可靠性提供了依据,而且为复杂生物大分子的溶液高次构造的测定奠定了基础。

④2D—NMR的发展导致了杂核(X—NMR),特别是13C—NMR谱的广泛研究和利用。杂核大多是低丰度,低灵敏度核种,由于灵敏度低和难以信号归属,以往利用不多。但X—NMR谱包含有大量的有用结构信息,新颖的异核相关谱(HET—Cosy)提供的异核之间的相关信息(如H—C,C—C,H—P,H—N)不仅为这些杂核的信号归属提供了依据,而且能提供H—NMR所不能提供的重要结构信息。

⑤2D—NMR技术的发展也促进了NOE的研究和应用的发展。NOE反映了核与核在空间的相互接近关系,因此它不仅能提供核与核之间(或质子自旋耦合链之间)通过空间的连接关系,而且能用来研究核在空间的相互排布即分子的构型和构象问题。

2D—NMR技术由于其突出的优点和巨大的潜力,在谱仪硬件能够满足2D—NMR实验(即进入80年代)以后的短短几年时间内,已有1000余篇论文和数十种评论和专著出现。

(2)NMR中新的实验和应用几乎每天都在出现,NMR技术本身今后将继续就如何得到更多的相关信息,简化图谱,改善和提高检测灵敏度等几方面进行发展,其中最富有发展前景的新技术有:

①选择和多重选择激励技术,进一步发展多量子技术,通过采用先进的射频技术激发那些在通常情况下禁阻的,极其微弱的多量子跃迁。选择性地探测分子内核与核之间的特定相关关系。或通过特形脉冲(shaped pulse)和软脉冲选择性地激发某些特定的核,集中研究某些感兴趣的结构问题。

②“反向”和“接力”的检测技术,在异核相关谱方面,采用反向检测(称之为inverseNMR,即通过H检测来替代以往的用杂核检测的测试方法)可大大提高异核相关谱的检测灵敏度(约1个数量级)。在同核相关谱方面,通过接力相干转移(RCT—1),多重接力相干迁移(RCT—2)和各向同性混合的相干转移技术(如HOHAHA)可用来解决复杂分子(包括生物大分子)的自旋偶合解析和信号归属问题。

③发展并应用谱的编辑技术,利用NMR本身在激发和接收方面的多种多样的选择和压制技术,可对十分复杂的NMR信号进行分类编辑。

④发展三维核磁共振(3D—NMR)技术,随着NMR的研究对象向生物大分子转移,NMR技术所提供的结构信息的数量和复杂性呈几何级数增加,近来已出现3D—NMR技术来替代2D—NMR方法,用于生物大分子的结构测定。初步探索的结果表明3D—NMR方法不仅进一步提高了信号的分离能力,并且能提供许多2D—NMR方法所不能提供的结构信息,大大简化结构解析过程。3D—NMR测定方法的广泛使用还有待于测定方法进一步改进和计算机技术的进步。

⑤与分子力学计算相结合,发展分子模型技术。在NNR信号完全归属的基础上,利用NOE所提供的分子中质子间的距离信息、计算分子三维立体构造的技术近年来在多肽和小蛋白质分子的研究中取得了巨大的成功。以距离几何算法和分子动力学为基础的分子模型技术(molecular modelling)正在逐步应用于其它各种生物分子的溶液构象问题。但在大分子与小分子或小分子与小分子相互作用的体系还有许多问题有待解决,例如在运动条件不利的体系中如何得到距离信息和距离信息的精度等。

(3)NMR波谱技术今后最富有前景的应用领域有以下几个方面:

①继续帮助有机化学家从自然界寻找具有生物活性的新颖有机化合物,今后这方面的研究重点是结构与活性的关系。即研究这些物质在参与生命过程时与生物大分子(如受体)或其它小分子相互作用的结构特征和动态特征。

②更多地用于多肽和蛋白质在溶液中高次构造的解析,成为蛋白质工程和分子生物学中研究蛋白质结构与功能关系的重要工具。并朝着采用稳定同位素标记光学CIDNP法与2D—NMR,3D—NMR技术相结合的方向发展。

③NMR技术将广泛用于核酸化学,确定DNA的螺旋结构的类型和它的序列特异性。研究课题将集中在核酸与配体的相互作用,其中核酸与蛋白质分子、核酸与小分子药物的相互作用是最重要的方面。

④NMR技术对于糖化学的应用将显示出越来越大的潜力,采用NMR技术来测定寡糖的序列,连接方式和连接位置,确定糖的构型和寡糖在溶液中的立体化学以及与蛋白质相互作用的结构特征和动态特征将是重要的研究领域。

⑤NMR技术将更多地用于研究动态的分子结构和在快速平衡中的变化。以深层理解分子的结构,描示结构的动态特征,了解化学反应的中间态及相互匹配时能量的变化。

⑥NMR技术将进一步深入生命科学和生物医学的研究领域,研究生物细胞和活组织的各种生理过程的生物化学变化。

以上都是与溶液NMR研究有关的领域,近年来固体NMR研究的NMR成象(imaging)技术也取得了巨大的进步,并在材料科学和生物医学研究方面继续发挥重要的作用。


转载请注明原文地址:https://juke.outofmemory.cn/read/2876814.html

最新回复(0)