1、加法交换律:a+b=b+a
2、加法结合律:(a+b)+c=a+(b+c)
3、减法结合律:a-(b-c)=a-b+c;a-(b+c)=a-b-c
4、乘法交换律:a×b=b×a
5、乘法结合律:(a×b)×c=a×(b×c)或a×b×c=a×(b×c)
6、乘法分配律:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c
7、乘法分配律的逆运用:a×c+a×b=(a+b)×c或a×c-b×c=(a-b)×c
8、商不变性质:a÷b÷c=a÷(b×c)=a÷c÷b;a÷b×c=a÷(b÷c)
在运算方面上的一系列定律,统称为运算定律,可以使计算更简便。
扩展资料:
运算定律的意义:
加法:将两个或者两个以上的数、量合并成一个数、量的计算叫加法。
加法交换律:两个数相加,交换加数的位置,和不变。
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
减法:从一个数量中减去另一个数量的运算叫做减法。
减法结合律:一个数连续减去两个数,可以先把后两个数相加,再相减。减去一个数,等于加这个数的相反数。减去一个数再加上一个数,等于减去这两个数的差。
乘法:求几个相同加数的和的简便运算叫做乘法。
乘法交换律:两个数相乘,交换因数的位置,积不变。
乘法结合律:三个数相乘,可以先乘前两个数,或者先乘后两个数,积不变。
分配律:分配律是乘法运算的一种简便运算,可用于分数、小数中。两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加,积不变,这叫做乘法分配律。
除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
参考资料:百度百科-运算定律
24 434
凌月霜丶
一、加法交换律:
1、定义:加法交换律是数学计算的法则之一。指两个加数相加,交换加数的位置,和不变。
2、举例:
加法交换律:20+480=480+20
3、加法交换律局限性:
尽管这一定律看上去似乎对于任何事物都显然成立,但事实并非如此。在没有时间的空间下(三维以内),加法交换律是完全正确的。但是一旦有了时间轴,这个定律就不成立了。
证明这个理论的实验之一如下:
(1)取一个方体物体,如较厚的书或者魔方之类皆可。将其平放在水平台上。
(2)现令正上方的一面,垂直与桌面对着你的一面和垂直桌面在你右边的面为面一、二、三。各自相对的面为面四五六。
(3)定义操作a为将此长方体翻转180度。即面三、六不动,一四交换,二五交换。定义操作b为将左边的面翻至上方。
(4)执行a+b后,向上的一面为面六。执行b+a后,向上的一面为面三。显然a+b不等于b+a。
二、加法结合律:
1、定义:三个数相加,先把前两个数相加,或者先把后两个数相加。和不变,这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)。
2、举例:
加法结合律:41+65+39=(41+39)+65
3、加法结合律证明:
下面从皮亚诺公理体系出发,使用数学归纳法,给出加法结合律的一个严格证明。其中,S(k)表示k的后继序数。简单来说S(k)=k+1。
要证明(m+n)+k=m+(n+k), 对k归纳.
1. k=0, 由加法定义得(m+n)+0=m+n和m+(n+0)=m+n, 因此结合律对k=0成立.
2. 假设结论对k成立, 即(m+n)+k=m+(n+k). 下证结论对S(k)成立,
由加法定义可得: (m+n)+S(k)=S((m+n)+k)
以及m+(n+S(k))=m+S(n+k)
=S(m+(n+k))
又由归纳假设(m+n)+k=m+(n+k)
因此S((m+n)+k)=S(m+(n+k))
所以(m+n)+S(k)=m+(n+S(k))
故结论对S(k)亦成立, 由归纳公理, 结论得证.