椭圆(Ellipse)是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。
椭圆是圆锥曲线的一种,即圆锥与平面的截线,椭圆的周长等于特定的正弦曲线在一个周期内的长度。
扩展资料
第一定义:平面内与两定点F1、F2的距离的和等于常数2a(2a≥|F1F2|)的动点P的轨迹叫做椭圆。即:其中两定点F1、F2叫做椭圆的焦点,两焦点的距离|F1F2|=2c≤2a叫做椭圆的焦距。P为椭圆的动点。
第二定义:椭圆平面内到定点F(c,0)的距离和到定直线l:x=a²/c(F不在l上)的距离之比为常数从C/A,(即离心率,0<e<1)的点的轨迹是椭圆。参考资料:百度百科-椭圆
椭圆是到两个定点的距离和是一个定值的点的轨迹。椭圆是对圆定义的一个扩展,它是平面中到两个点的距离之和为定值的所有点组成的图形,这两个点被称为焦点、两个点之间的距离称为焦距。
在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。