指的是正弦函数。
在直角三角形中,∠α(不是直角)的对边与斜边的比叫做∠α的正弦,记作sinα,即sinα=∠α的对边/∠α的斜边 。sinα在拉丁文中记做sinus。
正弦是∠α(非直角)的对边与斜边的比,余弦是∠α(非直角)的邻边与斜边的比。
勾股弦放到圆里。弦是圆周上两点连线。最大的弦是直径。 把直角三角形的弦放在直径上,股就是长的弦,即正弦,而勾就是短的弦,即余弦。
扩展资料:
正弦函数的定理:在一个三角形中,各边和它所对角的正弦的比相等,即 a/sin A=b/sin B=c/sin C
正弦函数的定理在三角形求面积中的运用-
S△=c²sinAsinB/2sin(A+B)(S△为三角形的面积,三个角为∠A∠B∠C,对边分别为a,b,c,)
S△=1/2acsinB=1/2bcsinA=1/2absinC (三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数)
另外,当sin值在180~360之间会出现负数,在360以上则会重复。
三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
在RT△ABC中,如果锐角A确定,那么角A的对边与邻边的比便随之确定,这个比叫做角A 的正切,记作tanA。
即tanA=角A 的对边/角A的邻边。
同样,在RT△ABC中,如果锐角A确定,那么角A的对边与斜边的比便随之确定,这个比叫做角A的正弦,记作sinA。
即sinA=角A的对边/角A的斜边。
同样,在RT△ABC中,如果锐角A确定,那么角A的邻边与斜边的比便随之确定,这个比叫做角A的余弦,记作cosA。
即cosA=角A的邻边/角A的斜边。
参考资料来源:百度百科——sin
sin指在直角三角形中,∠α(非直角)的对边与斜边的比叫做∠α的正弦,记作sinα,正弦是勾与弦的比例。古代说的“勾三股四弦五”中的“弦”,就是直角三角形中的斜边。股就是人的大腿,古人称直角三角形中长的那个直角边为“股”。
规律
按现代说法,正弦是直角三角形的对边与斜边之比。
现代正弦公式是:sin=直角三角形的对边比斜边。
斜边为r,对边为y,邻边为a。斜边r与邻边a夹角Ar的正弦sinA=y/r。
无论a,y,r为何值,正弦值恒大于等于0小于等于1,即0≤sin≤1。
sin是直角三角形的对边与斜边之比,sinA=∠A的对边/斜边,正弦在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA。
勾股弦放到圆里。弦是圆周上两点连线。最大的弦是直径。 把直角三角形的弦放在直径上,股就是∠A所对的弦,即正弦,勾就是余下的弦——余弦。
扩展资料:
按现代说法,正弦是直角三角形的对边与斜边之比。
现代正弦公式是:sin = 直角三角形的对边比斜边.
如图1,斜边为r,对边为y,邻边为a;斜边r与邻边a夹角Ar的正弦sinA=y/r。
无论a,y,r为何值,正弦值恒大于等于0小于等于1,即0≤sin≤1。