秦九韶公式是什么?

卡拉胶2023-02-01  25

秦九韶公式如下图所示:

秦九韶他把三角形的三条边分别称为小斜、中斜和大斜。一般地,一元n次多项式的求值需要经过(n+1)*n/2次乘法和n次加法,而秦九韶算法只需要n次乘法和n次加法。在人工计算时,一次大大简化了运算过程。

这种算法仍是多项式求值比较实用的算法,该算法看似简单,其最大的意义在于将求n次多项式的值转化为求n个一次多项式的值。在人工计算时,利用秦九韶算法和其中的系数表可以大幅简化运算。

秦九韶公式的特点:

秦九韶公式利用二次函数的性质求最大值,整个公式的使用简化了思想,降低了难度,起到了化难为易、化简为繁的作用,在教学中学生如果反过来可以进一步对公式加深了认识。

秦九韶在《数书九章》中并没有给出“三斜求积公式”的证明,著名数学家吴文俊先生在文中运用出入相补原理给出了一个具有我国古代几何韵味的证明,本文再给出两种颇具特色的证法,这种证法揭示了秦九韶公式与斐波那契恒等式之间的奇妙联系。

秦九韶算法公式如下图所示:

其中,a表示系数组成的数列,a[n]=aₙ,a[0]=a₀。

秦九韶算法能够将一元n次多项式的求值问题转化为n个一次式,对于一元n次多项式的求值,通常需要经过(n+1)*n/2次乘法,秦九韶算法的先进点就在于它只需要进行n次乘法,从而大大缩短人工简化的运算过程。

秦九韶算法的特点和作用

特点:通过一次式的反复计算,逐步得出高次多项式的值,对于一个n次多项式,只需做n次乘法和n次加法即可。

作用:解决了运算次数的问题,大大减少了乘法运算的次数,提高了运算效率。

数学思想:把高次转化为一次的化归思想方法。算法具有通用的特点,可以解决一类问题。

海伦秦九韶公式如下:

一、秦九韶算法

1247年,数学家秦九韶提出了一种多项式简化算法,被称为秦九韶算法。秦九韶算法记录在《数书九章》中,他对高次方程的数值解法与一次同余问题的解法进行了系统总结和发展,提出了相当完备的“正负开方术”和“大衍求一术”。

这也让秦九韶成为我国古代数学家的杰出代表,他的研究为中国古代数学发展带来了广泛而深远的影响。

秦九韶算法能够将一元n次多项式的求值问题转化为n个一次式。通过使用这种算法对计算过程的简化有很大作用,即便是在现代,利用计算机解决多项式的求值问题,秦九韶算法也是比较清晰简便的方式。

对于一元n次多项式的求值,通常需要经过(n+1)*n/2次乘法,秦九韶算法的先进点就在于它只需要进行n次乘法,从而大大缩短人工简化的运算过程。

二、海伦公式

已知一个三角形的三边长,怎么计算三角形的面积?这是我们在几何中经常碰到的问题。古希腊著名数学家海伦写了一本《测量仪论》,上面记载着一个重要公式:

这里,“△”指三角形的面积,a、b、c是三角形各边长。海伦对这个公式做出了证明,所以后人称这个公式为海伦公式。

根据海伦公式,假设平面内的一个边长分别为a、b、c的三角形,三角形的面积S和其中p为周长的一半可求,


转载请注明原文地址:https://juke.outofmemory.cn/read/2866384.html

最新回复(0)