建立数学模型的方法

民宗局2023-02-01  35

建立数学模型的方法如下:

1.类比法。

数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。

类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型。

2.量纲分析法。

量纲分析是20世纪初提出的在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。

在国际单位制中,有七个基本量:质量、长度、时间、电流、温度、光强度和物质的量,它们的量纲分别为M、L、T、I、H、J和N,称为基本量纲。

量纲分析法常常用于定性地研究某些关系和性质,利用量纲齐次原则寻求物理量之间的关系,在数学建模过程中常常进行无量纲化,无量纲化是根据量纲分析思想,恰当地选择特征尺度将有量纲量化为无量纲量,从而达到减少参数、简化模型的效果。

3.差分法。

差分法的数学思想是通过taylor级数展开等方法把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有以下几种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

差分法的解题步骤为:建立微分方程构造差分格式求解差分方程精度分析和检验。

4.变分法。

变分法是处理函数的函数的数学领域,即泛函问题,和处理数的函数的普通微积分相对。这样的泛函可以通过未知函数的积分和它的导数来构造,最终寻求的是极值函数。现实中很多现象可以表达为泛函极小问题,即变分问题。变分问题的求解方法通常有两种:古典变分法和最优控制论。受基础知识的制约,数学建模竞赛大专组的建模方法使用变分法较少。

数学模型有以下几种分类方法

1. 按模型的数学方法分:

几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模

型、马氏链模型等。

2. 按模型的特征分:

静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线

性模型和非线性模型等。

3. 按模型的应用领域分:

人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等。

4. 按建模的目的分: :

预测模型、优化模型、决策模型、控制模型等。

一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往

往也和建模的目的对应

5. 按对模型结构的了解程度分: :

有白箱模型、灰箱模型、黑箱模型等。

比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型。

6. 按比赛命题方向分:

国赛一般是离散模型和连续模型各一个,2016 美赛六个题目(离散、连续、

运筹学/复杂网络、大数据、环境科学、政策)

知识科普:

数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

初等数学法。主要用于一些静态、线性、确定性的模型。例如,席位分配问题,学生成绩的比较,一些简单的传染病静态模型。

数据分析法。从大量的观测数据中,利用统计方法建立数学模型,常见的有:回归分析法,时序分析法。

仿真和其他方法。主要有计算机模拟(是一种统计估计方法,等效于抽样试验,可以离散系统模拟和连续系统模拟),因子试验法(主要是在系统上做局部试验,根据试验结果进行不断分析修改,求得所需模型结构),人工现实法(基于对系统的了解和所要达到的目标。

层次分析法。主要用于有关经济计划和管理、能源决策和分配、行为科学、军事科学、军事指挥、运输、农业、教育、人才、医疗、环境等领域,以便进行决策、评价、分析、预测等。该方法关键的一步是建立层次结构模型。


转载请注明原文地址:https://juke.outofmemory.cn/read/2862617.html

最新回复(0)