高中数学八大函数是:幂函数,指数函数,对数函数,反函数,一次函数,二次函数,反比例函数,对勾函数。
函数的性质:
折叠函数有界性:设函数f(x)的定义域为D,数集X包含于D。如果存在数K1,使得f(x)≤K1对任一x∈X都成立,则称函数f(x)在X上有上界,而K1称为函数f(x)在X上的一个上界。
如果存在数K2,使得f(x)≥K2对任一x∈X都成立,则称函数f(x)在X上有下界,而K2称为函数f(x)在X上的一个下界。如果存在正数M,使得|f(x)|≤M对任一x∈X都成立,则称函数f(x)在X上有界,如果这样的M不存在,就称函数f(x)在X上无界。
函数f(x)在X上有界的充分必要条件是它在X上既有上界又有下界。
折叠函数的单调性:设函数f(x)的定义域为D,区间I包含于D。如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调增加的。
如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调减少的。单调增加和单调减少的函数统称为单调函数。
高中三角函数公式如下:
1、sin(A+B) = sinAcosB+cosAsinB。
2、sin(A-B) = sinAcosB-cosAsinB。
3、cos(A+B) = cosAcosB-sinAsinB。
4、cos(A-B) = cosAcosB+sinAsinB。
5、tan(A+B) = (tanA+tanB)/(1-tanAtanB)。
6、tan(A-B) = (tanA-tanB)/(1+tanAtanB)。
7、cot(A+B) = (cotAcotB-1)/(cotB+cotA)。
8、cot(A-B) = (cotAcotB+1)/(cotB-cotA)。
双曲函数:
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)