平行四边形具有不稳定性,易变形。
平行四边形的判定:
两组对边分别平行的四边形是平行四边形(定义判定法);一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形。
两组对角分别相等的四边形是平行四边形(两组对边平行判定);对角线互相平分的四边形是平行四边形。
平行四边形的性质:
平行四边形具有2阶(至180°)的旋转对称性(如果是正方形则为4阶)。如果它也具有两行反射对称性,那么它必须是菱形或长方形(非矩形矩形)。如果它有四行反射对称,它是一个正方形。
平行四边形的周长为2(a + b),其中a和b为相邻边的长度。与任何其他凸多边形不同,平行四边形不能刻在任何小于其面积的两倍的三角形。在平行四边形的内侧或外部构造的四个正方形的中心是正方形的顶点。
①平行四边形两组对边分别平行;
②平行四边形的两组对边分别相等;
③平行四边形的两组对角分别相等;
④平行四边形的对角线互相平分。
此外,平行四边形还具有不稳定性,比较容易变形。
扩展资料:
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的两组对边分别相等” )
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的两组对角分别相等” )
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补。
(简述为“平行四边形的邻角互补”)
(4)夹在两条平行线间的平行的高相等。(简述为“平行线间的高距离处处相等”)
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的对角线互相平分” )
辅助线:
一、连接对角线或平移对角线。
二、过顶点作对边的垂线构成直角三角形。
三、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构成线段平行或中位线。
四、连接顶点与对边上一点的线段或延长这条线段,构造相似三角形或等积三角形。
五、过顶点作对角线的垂线,构成线段平行或三角形全等。
参考资料来源:百度百科——平行四边形
平行四边形具有(不稳定)性。
平行四边行的特点:
(1)平行四边形具有不稳定性。
(2)平行四边形对边平行且相等。
(3)平行四边形对角相等。
平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形不稳定,三角形稳定。
扩展资料:
平行四边形的性质:
(1)如果一个四边形是平行四边形,那么这个四边形的邻角互补。
(2)夹在两条平行线间的平行的高相等。(简述为“平行线间的高距离处处相等”)
(3)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(4)连接任意四边形各边的中点所得图形是平行四边形。(推论)
(5)平行四边形的面积等于底和高的积。
(6)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。