平行四边形,长方形,正方形,梯形,菱形等等。
1、平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
2、长方形,数学术语,是有一个角是直角的平行四边形叫做长方形。也定义为四个角都是直角的平行四边形,同时,正方形是一种特殊的长方形,也是菱形。
3、正方形是特殊的平行四边形之一。即有一组邻边相等,并且有一个角是直角的平行四边形称为正方形。
4、梯形是指只有一组对边平行的四边形。平行的两边叫做梯形的底边,较长的一条底边叫下底,较短的一条底边叫上底。另外两边叫腰;夹在两底之间的垂线段叫梯形的高。一腰垂直于底的梯形叫直角梯形。两腰相等的梯形叫等腰梯形。
5、在同一平面内,有一组邻边相等的平行四边形是菱形,四边都相等的四边形是菱形,菱形的对角线互相垂直平分且平分每一组对角,菱形是轴对称图形,对称轴有2条,即两条对角线所在直线,菱形是中心对称图形。
平行四边形包括矩形、菱形、正方形、等腰梯形、 长方形。平行四边形是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。
在同一个平面上,有两组对边分别平行的四边形就叫做平行四边形,而平行四边形包括矩形、菱形、正方形、等腰梯形 长方形。平行四边形的特点(也就是它的性质):1、对边平行2、对边相等3、对角相等4、对角线互相平分5、邻角互补
平行四变形的其他性质:平行四边形的对边是平行的(根据定义),因此永远不会相交。平行四边形的面积是由其对角线之一创建的三角形的面积的两倍。平行四边形的面积也等于两个相邻边的矢量交叉乘积的大小。任何通过平行四边形中点的线将该区域平分。任何非简并仿射变换都采用平行四边形的平行四边形。