投影向量的计算公式:向量a·向量b=|a|*|b|*cosΘ。
平面向量是在二维平面内既有方向又有大小的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
向量投影:
投影指图形的影子投到一个面或一条线上。投影就是物体在太阳光的照射下在地面形成的影子。当太阳光与地面垂直时是正投影,这就是线性代数中研究的投影。当物体与地面垂直时,影子长度为0。
设两个非零向量a与b的夹角为θ,则将|b|·cosθ叫作向量b在向量a方向上的投影或称标投影。一个向量在另一个向量方向上的投影是一个数量称投影向量。
向量积,别称外积、叉积、矢积、叉乘,是在向量空间中向量的二元运算。它的运算结果是一个向量而不是一个标量,并且两个向量的叉积与这两个向量和垂直。其通常应用于物理学光学和计算机图形学中。
一个向量a在另一个向量b方向上的投影是:
这个投影表示的向量跟向量b是共线向量,可以把它的数量乘上b方向的单位向量:
注意,那个分式分子分母上的向量b不能约去。
扩展资料
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。
向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。
参考资料:百度百科-向量
向量投影公式为:向量a·向量b=| a |*| b |*cosΘ (Θ为两向量夹角)。
平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
相关信息:
物理学中的速度与力的平行四边形概念是向量理论的一个重要起源之一。18世纪中叶之后,欧拉、拉格朗日、拉普拉斯和柯西等的工作,直接导致了在19世纪中叶向量力学的建立。同时,向量概念是近代数学中重要和基本的概念之一,有着深刻的几何背景。它始于莱布尼兹的位置几何。
现代向量理论是在复数的几何表示这条线索上发展起来的。18世纪,由于在一些数学的推导中用到复数,复数的几何表示成为人们探讨的热点。哈密顿在做3维复数的模拟物的过程中发现了四元数。随后,吉布斯和亥维赛在四元数基础上创造了向量分析系统,最终被广为接受。