一、含义不同:
1、排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;
从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
a31表示:从3个不同元素中,任取1(1≤3,1与3均为自然数,下同)个不同的元素按照一定的顺序排成一列,叫做从3个不同元素中取出1个元素的一个排列。
2、组合的定义:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;
从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。
c31表示:从3个不同元素中,任取1(1≤3)个元素并成一组,叫做从3个不同元素中取出1个元素的一个组合。
二、计算公式不同:
1、 A(n,m)=n(n-1)(n-2)......(n-m+1)=n!/(n-m)!
2、C(n,m)=A(n,m)/m!=n!/【m!(n-m)!】
但二者计算结果相同,都是3。
扩展资料:
组合数递推公式:
c(n,m)=c(n-1,m-1)+c(n,m-1)
等式左边表示从m个元素中选取n个元素,而等式右边表示这一个过程的另一种实现方法:
任意选择m中的某个备选元素为特殊元素,从m中选n个元素可以由此特殊元素的被包含与否分成两类情况,即n个被选择元素包含了特殊元素和n个被选择元素不包含该特殊元素。
前者相当于从m-1个元素中选出n-1个元素的组合,即c(m-1,n-1);后者相当于从m-1个元素中选出n个元素的组合,即c(m-1,n)。
c(n,0)+c(n,1)+c(n,2)+……+c(n,n)=2的n次方
相关运用:(a+b)的n次方的二项式定理的系数,即为此数列;任何集合的子集个数也为用为此数列,而得出为2的n次方个。
参考资料来源:百度百科-排列组合
C(3,1) =3。
排列组合计算公式如下:
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。
加法原理和分类计数法介绍
1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
2、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
3、分类的要求 :每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
以上内容参考 百度百科—排列组合
C31=3/1=1,排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。排列组合与古典概率论关系密切,排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。