数学上的e等于几?

世界十大奇迹2023-01-30  29

数学上的e约等于2.718281828459045。

e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数(Euler number),以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰·纳皮尔(John Napier)引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。

e对于自然数的特殊意义:

所有大于2的2n形式的偶数存在以e为中心的共轭奇数组,每一组的和均为2n,而且至少存在一组是共轭素数。

可以说是素数的中心轴,只是奇数的中心轴。

e约等于2.71828182。

小写e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数,以瑞士数学家欧拉命名。e=2.71828182……是微积分中的两个常用极限之一。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。

e的起源:

在1690年,莱布尼茨在信中第一次提到常数e。在论文中第一次提到常数e,是约翰·纳皮尔于1618年出版的对数著作附录中的一张表。

但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉·奥特雷德制作。第一次把e看为常数的是雅各·伯努利。欧拉也听说了这一常数,所以在27岁时,用发表论文的方式将e“保送”到微积分。


转载请注明原文地址:https://juke.outofmemory.cn/read/2835597.html

最新回复(0)