杨辉三角2009行的左起第3个数是2015028
2015028=1^2-2^2+3^-4^+…-2006^2+2007^2
2015028=1+2+3+4+…+2006+2007
杨辉三角是一个由数字排列成的三角形数表,一般形式如下:
1
n=0
1
1
n=1
1
2
1
n=2
1
3
3
1
n=3
1
4
6
4
1
n=4
1
5
10
10
5
1
n=5
1
6
15
20
15
6
1
n=6
……
此数列中各行中的数字正好是二项式a+b乘方后,展开始终各项的系数。如:
(a+b)^1=a^1+b^1
(a+b)^2=a^2+2ab+b^2
(a+b)^3=a^3+3a^2b+3ab^2+b^3
……
(a+b)^6=a^6+6a^5b+15a^4b^2+20a^3b^3+15a^2b^4+6ab^5+b^6(注意发现规律)
……
简单的说一下就是两个未知数和的幂次方运算后的系数问题,比如(x+y)的平方=x的平方+2xy+y的平方,这样系数就是1,2,1这就是杨辉三角的其中一行,立方,四次方,运算的结果看看各项的系数,你就明白其中的道理了
这就是杨辉三角,也叫贾宪三角
他于我们现在的学习联系最紧密的是2项式乘方展开式的系数规律。如图,在贾宪三角中,第3行的第三个数恰好对应着两数和的平方公式(在此就不做说明了)依次下去
杨辉三角是一个由数字排列成的三角形数表,一般形式如下:
1 n=0
1 1 n=1
1 2 1 n=2
1 3 3 1 n=3
1 4 6 4 1 n=4
1 5 10 10 5 1 n=5
1 6 15 20 15 6 1 n=6
…………………………………………………………
杨辉三角最本质的特征是:它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。
其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。
杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。
而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。具体的用
杨辉三角的简史:北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算,南宋数学家杨辉在《详解九章算法》(1961年)记载并保存了“贾宪三角”,故称杨辉三角。元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”。
时间上:杨辉(一二六一)朱世杰(一三○三)也明显就可以知道是杨辉发现的
朱世杰只是扩充了其中的内容
同时 这也是多项式(a+b)^n 打开括号后的各个项的二次项系数的规律 即为
因此 杨辉三角第x层第y项直接就是 (y nCr x)
我们也不难得到 第x层的所有项的总和 为 2^(x-1) (即(a+b)^x中a,b都为1的时候)
[ 上述y^x 指 y的 x次方;(a nCr b) 指 组合数]
而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。具体的用法我们会在教学内容中讲授。
在国外,这也叫做"帕斯卡三角形"
S1:这些数排列的形状像等腰三角形,两腰上的数都是1
S2:从右往左斜着看,从左往右斜着看,和前面的看法一样。我发现这个数列是左右对称的。
S3:上面两个数之和就是下面的一行的数。
S4:这行数是第几行,就是第二个数加一。……
幻方,在我国也称纵横图,它的神奇特点吸引了无数人对它的痴迷。从我国古代的“河出图,洛出书,圣人则之”的传说起,系统研究幻方的第一人,当数我国古代数学家——杨辉。
杨辉,字谦光,钱塘(今杭州)人,我国南宋时期杰出的数学家,与秦九韶、李冶、朱世杰并称宋元四大数学家,他在我国古代数学史和数学教育史上占有十分重要的地位。
杨辉对幻方的研究源于一个小故事。当时杨辉是台州的地方官,一次外出巡游,碰到一孩童挡道,杨辉问明原因方知是一孩童在地I 做一道数学算题,杨辉一听来了兴趣,下轿来到孩童旁问是什么算题。原来,这个孩童在算一位老先生出的一道趣题:把1到9的数字分行排列,不论竖着加、横着加,还是斜着加,结果都等于15。
杨辉看到这个算题, 时想起来他在西汉学者戴德编纂的《大戴礼》一书中也
见过。杨辉想到这儿,和孩童一起算了起来,直到午后,两人终于将算式摆出来了。
后来,杨辉随孩童来到老先生家里,与老先生谈论起数学问题来。老先生说:“北周的甄弯注《数术记遗》一书中写过‘九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央。”’杨辉听了,这与自己与孩童摆出来的完全一样。便问老先生:“你可知这个九宫图是如何造出来的”老先生说不知
道。
杨辉回到家中,反复琢磨。一天,他终于发现一条规律,并总结成四句话:“九子斜排,上下对易,左右相更,四维挺出”。就是说:先把l~9九个数依次斜排,再把上l下9两数对调,左7右3两数对调,最后把四面的2、4、6、8向外面挺出,这样三阶幻方就填好了。
杨辉研究出三阶幻方(也叫络书或九宫图)的构造方法后,又系统的研究了四阶幻方至十阶幻方。在这几种幻方中,杨辉只给出了三阶、四阶幻方构造方法的说明,四阶以上幻方,杨辉只画出图形而未留下作法。但他所画的五阶、六阶乃至十阶幻方全都准确无误,可见他已经掌握了高阶幻方的构成规律。
在信息领域杨辉三角也起着重要作用。
6取0,C6取1,C6取2,C6取3……C6取6,一共7项。
C6取4的含义就是6543/1234,C6取3的含义是654/123就是先从大的倒着乘以要取的位数,然后除以由1乘到要取的位数。特别的,Cn取0都是1
举例,(a+b)^10,
一共11项,分别是
C10取0,C10取2,C10取3……C10取10,
比如说C10取6,就是1098765/123456
明白了吧。
还有一个公式,举例说,C10取6,就等于C10取(10-6)=C10取4
这样以后,计算可以方便些。
一共N项时,……你就自己推广吧。
还有一种笨方法,就是杨辉三角的“肩膀”原理。即下面的数等于它肩膀上两个数之和。
1三角形的两条斜边上都是数字1,而其余的数都等于它肩上的两个数字相加
2杨辉三角具有对称性(对称美),与首末两端“等距离 ”的两个数相等
3每一行的第二个数就是这行的行数
4所有行的第二个数构成等差数列
5第n行包含n+1个数
62n-1行为奇数
7行数为质数的数都能被行数整除
8第n行数字的和为2 n从杨辉三角中一个确定的数的“左(右)肩” 出发,向右(左)上方作一条和左斜边平行的射线,射线上各数的和等于这个数
9
杨辉三角,也叫贾宪三角,在外国被称为帕斯卡三角。与我们现在的学习联系最紧密的是2项式乘方展开式的系数规律。
与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即二项式定理。
例如,在杨辉三角中,第3行的第三个数恰好对应着两数和的平方的展开式的每一项的系数,
即(a+b)^2;=a^2+2ab+b^2
第4行的四个数恰好依次对应两数和的立方的展开式的每一项的系数
即(a+b)^3=a^3+3a^2b+3ab^2+b^3
以此类推。
又因为性质6:第n行的m个数可表示为C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。因此可得出二项式定理的公式为:(a+b)^n=C(n,0)a^nb^0+C(n,1)a^(n-1)b^1++C(n,r)a^(n-r)b^r+C(n,n)a^0b^n
因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学。求二项式展开式系数的问题,实际上是一种组合数的计算问题。用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。
前提:端点的数为1
1、每个数等于它上方两数之和。
2、每行数字左右对称,由1开始逐渐变大。
3、第n行的数字有n项。
4、第n行数字和为2^(n-1)。
5、第n行的第m个数和第n-m+1个数相等,即C(n-1,m-1)=C(n-1,n-m),这是组合数性质
6、每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。
7、第n行的m个数可表示为C(n-1,m-1)(n-1下标,m-1上标),即为从n-1个不同
杨辉三角的组合数表示元素中取m-1个元素的组合数。
帕斯卡三角形组合数计算方法:C(n,m)=n!/[m!(n-m)!]
8、(a+b)^n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
9、将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。
10、将各行数字相排列,可得11的N次方:1=11º 11=11¹ 121=11²
杨辉三角的第n行就是二项式展开式的系数列。
对称性:杨辉三角中的数字左、右对称,对称轴是杨辉三角形底边上的“高”。
结构特征:杨辉三角除斜边上1以外的各数,都等于它“肩上”的两数之和。
这些数排列的形状像等腰三角形,两腰上的数都是1。
从右往左斜着看,从左往右斜着看,和前面的看法一样,这个数列是左右对称的。
上面两个数之和就是下面的一行的数。
这行数是第几行,就是第二个数加一。
以上就是关于杨辉三角2009行的左起第3个数有什么规律要规律偶全部的内容,包括:杨辉三角2009行的左起第3个数有什么规律要规律偶、杨辉三角形有什么规律、杨辉三角形的规律是什么,懒得找了等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!