圆的切线垂直于过其切点的半径;经过半径的非圆心一端,并且垂直于这条半径的直线,就是这个圆的一条切线。
切线判定定理
一直线若与一圆有交点,且连接交点与圆心的直线与该直线垂直,那么这条直线就是圆的切线。
切线的性质定理的推论
(1)经过切点垂直于切线的直线必经过圆心。(2)圆的切线垂直于经过切点的半径。
切线长定理
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角。
切线 曲线切线和法线的定义
曲线切线和法线的定义
P和Q是曲线C上邻近的两点,P是定点,当Q点沿着曲线C无限地接近P点时,割线PQ的极限位置PT叫做曲线C在点P的切线,P点叫做切点;经过切点T并且垂直于切线PT的直线PN叫做曲线C在点P的法线(无限逼近的思想)
说明:平面几何中,将和圆只有一个公共交点的直线叫做圆的切线.这种定义不适用于一般的曲线;在图5-26中,PT是曲线C在点P的切线,但它和曲线C还有另外一个交点;相反,直线l尽管和曲线C只有一个交点,但它却不是曲线C的切线.
性质和定理
圆的切线垂直于过切点的半径;经过半径的一端,并且垂直于这条半径的直线,是这个圆的切线
切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线
切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线(2)经过切点垂直于切线的直线必经过圆心(3)圆的切线垂直于经过切点的半径
切线长定理:从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角
[编辑本段]切线性质
切线的性质定理:圆的切线垂直于经过切点的半径.
推论1:经过圆心且垂直于切线的直线必经过切点.
推论2:经过切点且垂直于切线的直线必经过圆心.
切线的性质主要有五个:
(1)切线和圆只有一个公共点;
(2)切线和圆心的距离等于圆的半径;
(3)切线垂直于经过切点的半径;
(4)经过圆心垂直于切线的直线必过切点;
(5)经过切点垂直于切线的直线必过圆心.
(6)从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项
其中(1)是由切线的定义得到的,(2)是由直线和圆的位置关系定理得到的,(6)是由相似三角形推得的,也就是切割线定理
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。 切线的识别方法有三种:
(1)和圆只有一个公共点的直线是圆的切线。
(2)和圆心的距离等于圆的半径的直线是圆的切线。
(3)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线
二、辅助线的作法: 证明一条直线是圆的切线的常用方法有两种:
(1)当直线和圆有一个公共点时,把圆心和这个公共点连接起来,则得到半径,然后证明直线垂直于这条半径,记为“点已知,连半径,证垂直。”应用的是切线的判定定理。
(2)当直线和圆的公共点没有明确时,过圆心作直线的垂线,再证圆心到直线的距离(d)等于半径(r),记为“点未知,作垂直,证半径”。应用的是切线的识别方法(2)。
三、知能点2:
切线的性质定理:圆的切线垂直于过切点的半径。
四、辅助线的作法:
有圆的切线时,常常连接圆心和切点得切线垂直半径。记为“见切线,连半径,得垂直。”
五、中考考点点击: 切线的判定和性质在中考中是重点内容,试题题型灵活多样,填空、选择、作图、解答题较多。
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角(1)切线和圆只有一个公共点; (2)切线和圆心的距离等于圆的半径; (3)切线垂直于经过切点的半径; (4)经过圆心垂直于切线的直线必过切点; (5)经过切点垂直于切线的直线必过圆心; (6)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 弦切角定理:弦切角等于它所夹的孤对的圆周角.它是圆中证明角相等的重要定理之一. 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
以上就是关于圆的切线的判定定理全部的内容,包括:圆的切线的判定定理、什么是切线圆的切线与某点在曲线上的切线有什么不同几何意义.、如何判定一条直线是圆的切线等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!