1、提高了产量:集成电路是采用多次光刻、沉积制成的,在核心面积一定的条件下,晶片越大一次制作的核心越多,生产效率就提高了
2、晶片利用率提高了:电路一般设计都是矩形的,而晶片拉出来都是圆形的,在边角上光刻的电路是不完整的,必须切掉废弃,晶片越大,容纳的电路越多,废弃的比例越少,降低了成本(晶片也是很贵的,除拉晶,还要切割、抛光,工艺很复杂)
3、现在的电路很复杂,面积比较大,小晶片能容纳的电路有限,制作成本高,只有大晶片才能降低成本。
碳化硅外延晶片即以碳化硅单晶作为衬底生长的外延片。
碳化硅外延晶片使用领域、行业:外延晶片主要用于各种分立器件的制作,比如SBD、MOSFET、JFET、BJT、SIT和MESFET等,这些器件广泛应用于各个领域,如白色家电、混合及纯电动汽车、太阳能和风能发电、UPS、马达控制、轨道机车、轮船和智能电网等。
碳化硅外延晶片属于半导体行业。
扩展资料:
2012年,中国国内首批产业化3英寸和4英寸碳化硅半导体外延晶片在位于厦门火炬高新区的瀚天泰成电子科技(厦门)有限公司投产。
2013年,瀚天泰成计划试生产6英寸规格的碳化硅外延品片;到2016年,将实现年产碳化硅外延晶片2万片,产值有望达到4.2亿元。
2015年,中国科学院物理研究所研究员陈小龙研究组与北京天科合达蓝光半导体有限公司合作,解决了6英寸扩径技术和晶片加工技术,成功研制出了6英寸碳化硅单晶衬底。截至2014年3月,天科合达形成了一条年产7万片碳化硅晶片的生产线。
参考资料来源:凤凰网-中国成功研制国产6英寸碳化硅晶片 年产7万片
和讯网-央广独家国内首批商用碳化硅外延晶片在厦门投产
SoC的定义多种多样,由于其内涵丰富、套用范围广,很难给出准确定义。一般说来, SoC称为系统级晶片,也有称片上系统,意指它是一个产品,是一个有专用目标的积体电路,其中包含完整系统并有嵌入软体的全部内容。同时它又是一种技术,用以实现从确定系统功能开始,到软/硬体划分,并完成设计的整个过程。
基本介绍 中文名 :系统级晶片 外文名 :System on Chip 缩写 :SoC 别称 :民航SOC 英文解析,片上系统,综述,功能,技术发展,技术特点,优势,存在问题,核心技术,设计思想,基本结构,设计基础,设计过程,设计方法学,套用动态, 英文解析 SOC,或者SoC,是一个缩写,包括的意思有: 1) SoC: System on Chip的缩写,称为晶片级系统,也有称片上系统,意指它是一个产品,是一个有专用目标的积体电路,其中包含完整系统并有嵌入软体的全部内容。 2) SOC : Security Operations Center的缩写,属于信息安全领域的安全运行中心。 3) 民航SOC :System Operations Center的缩写,指民航领域的指挥控制系统。 4)一个是Service-Oriented Computing,“面向服务的计算” 5)SOC(Signal Operation Control) 中文名为信号操作控制器,它不是创造概念的发明,而是针对工业自动化现状提出的一种融合性产品。它采用的技术是正在工业现场大量使用的成熟技术,但又不是对现有技术的简单堆砌,是对众多实用技术进行封装、接口、集成,形成全新的一体化的控制器,可由一个控制器就可以完成作业,称为SOC。 6)SOC(start-of-conversion ),启动转换。 7)short-open calibration 短开路校准。 片上系统 System on Chip,简称Soc,也即片上系统。从狭义角度讲,它是信息系统核心的晶片集成,是将系统关键部件集成在一块晶片上;从广义角度讲, SoC是一个微小型系统,如果说中央处理器(CPU)是大脑,那么SoC就是包括大脑、心脏、眼睛和手的系统。国内外学术界一般倾向将SoC定义为将微处理器、模拟IP核、数字IP核和存储器(或片外存储控制接口)集成在单一晶片上,它通常是客户定制的,或是面向特定用途的标准产品。 SoC定义的基本内容主要在两方面:其一是它的构成,其二是它形成过程。系统级晶片的构成可以是系统级晶片控制逻辑模组、微处理器/微控制器CPU 核心模组、数位讯号处理器DSP模组、嵌入的存储器模组、和外部进行通讯的接口模组、含有ADC /DAC 的模拟前端模组、电源提供和功耗管理模组,对于一个无线SoC还有射频前端模组、用户定义逻辑(它可以由FPGA 或ASIC实现)以及微电子机械模组,更重要的是一个SoC 晶片内嵌有基本软体(RDOS或COS以及其他套用软体)模组或可载入的用户软体等。系统级晶片形成或产生过程包含以下三个方面: 1) 基于单片集成系统的软硬体协同设计和验证; 2) 再利用逻辑面积技术使用和产能占有比例有效提高即开发和研究IP核生成及复用技术,特别是大容量的存储模组嵌入的重复套用等; 3) 超深亚微米(VDSM) 、纳米积体电路的设计理论和技术。 SoC设计的关键技术 SoC关键技术主要包括汇流排架构技术、IP核可复用技术、软硬体协同设计技术、SoC验证技术、可测性设计技术、低功耗设计技术、超深亚微米电路实现技术, 并且包含做嵌入式软体移植、开发研究,是一门跨学科的新兴研究领域 综述 SoC是System on Chip的缩写,直译是“晶片级系统”,通常简称“片上系统”。因为涉及到“Chip”,SoC身上也会体现出“积体电路”与“晶片”之间的联系和区别,其相关内容包括积体电路的设计、系统集成、晶片设计、生产、封装、测试等等。跟“晶片”的定义类似,SoC更强调的是一个整体,在积体电路领域,给它的定义为:由多个具有特定功能的积体电路组合在一个晶片上形成的系统或产品,其中包含完整的硬体系统及其承载的嵌入式软体。 这意味着,在单个晶片上,就能完成一个电子系统的功能,而这个系统在以前往往需要一个或多个电路板,以及板上的各种电子器件、晶片和互连线共同配合来实现。前面我们说积体电路的时候提到过楼房对平房的集成,而SoC可以看作是城镇对楼房的集成;宾馆、饭店、商场、超市、医院、学校、汽车站和大量的住宅,集中在一起,构成了一个小镇的功能,满足人们吃住行的基本需求。目前SoC更多的是对处理器(包括CPU、DSP)、存储器、各种接口控制模组、各种互联汇流排的集成,其典型代表为手机晶片(参见术语“终端晶片”的介绍)。目前SoC还达不到单晶片实现一个传统的电子产品的程度,可以说现在SoC只是实现了一个小镇的功能,还不能实现一个城市的功能。 SOC积体电路 SoC有两个显著的特点:一是硬体规模庞大,通常基于IP设计模式;二是软体比重大,需要进行软硬体协同设计。城市相比农村的优势很明显:配套齐全、交通便利、效率高。SoC也有类似特点:在单个晶片上集成了更多配套的电路,节省了积体电路的面积,也就节省了成本,相当于城市的能源利用率提高了;片上互联相当于城市的快速道路,高速、低耗,原来分布在电路板上的各器件之间的信息传输,集中到同一个晶片中,相当于本来要坐长途汽车才能到达的地方,现在已经挪到城里来了,坐一趟捷运或BRT就到了,这样明显速度快了很多;城市的第三产业发达,更具有竞争力,而SoC上的软体则相当于城市的服务业务,不单硬体好,软体也要好;同样一套硬体,今天可以用来做某件事,明天又可以用来做另一件事,类似于城市中整个社会的资源配置和调度、利用率方面的提高。可见SoC在性能、成本、功耗、可靠性,以及生命周期与适用范围各方面都有明显的优势,因此它是积体电路设计发展的必然趋势。目前在性能和功耗敏感的终端晶片领域,SoC已占据主导地位;而且其套用正在扩展到更广的领域。单晶片实现完整的电子系统,是IC 产业未来的发展方向。 功能 1) 安全对象管理 2) 脆弱性管理 3) 风险管理 4) 事件管理 5) 网路管理 6) 安全预警与告警管理 7) 安全策略管理 8) 工单管理 9) 知识库管路 10) 专家辅助决策管理 11) 报表管理 12) 分级管理 系统可以分为三大组件:伺服器(Server)、代理(Agent)和资料库(DataBase)。代理(Agent)负责在网路中采集全网安全事件,预处理(对原始安全事件进行收集、过滤、归并等操作)后传送给伺服器(Server);伺服器负责对预处理后的安全事件进行集中分析、回响、可视化输出以及做出专家建议;资料库则负责集中存储预处理后的安全事件。 技术发展 积体电路的发展已有40年的历史,它一直遵循摩尔所指示的规律推进,现已进入深亚微米阶段。由于信息市场的需求和微电子自身的发展,引发了以微细加工(积体电路特征尺寸不断缩小)为主要特征的多种工艺集成技术和面向套用的系统级晶片的发展。随着半导体产业进入超深亚微米乃至纳米加工时代,在单一积体电路晶片上就可以实现一个复杂的电子系统,诸如手机晶片、数位电视晶片、DVD 晶片等。在未来几年内,上亿个电晶体、几千万个逻辑门都可望在单一晶片上实现。 SoC (System - on - Chip)设计技术始于20世纪90年代中期,随着半导体工艺技术的发展,IC设计者能够将愈来愈复杂的功能集成到单矽片上, SoC正是在积体电路( IC)向集成系统( IS)转变的大方向下产生的。1994年Motorola发布的FlexCore系统(用来制作基于68000和PowerPC的定制微处理器)和1995年LSILogic公司为Sony公司设计的SoC,可能是基于IP( IntellectualProperty)核完成SoC设计的最早报导。由于SoC可以充分利用已有的设计积累,显著地提高了ASIC的设计能力,因此发展非常迅速,引起了工业界和学术界的关注。 SOC是积体电路发展的必然趋势,是技术发展的必然,也是IC 产业未来的发展。 技术特点 半导体工艺技术的系统集成 软体系统和硬体系统的集成 优势 降低耗电量 减少体积 增加系统功能 提高速度 节省成本 存在问题 当前晶片设计业正面临着一系列的挑战,系统晶片SoC已经成为IC设计业界的焦点, SoC性能越来越强,规模越来越大。SoC晶片的规模一般远大于普通的ASIC,同时由于深亚微米工艺带来的设计困难等,使得SoC设计的复杂度大大提高。在SoC设计中,仿真与验证是SoC设计流程中最复杂、最耗时的环节,约占整个晶片开发周期的50%~80% ,采用先进的设计与仿真验证方法成为SoC设计成功的关键。SoC技术的发展趋势是基于SoC开发平台,基于平台的设计是一种可以达到最大程度系统重用的面向集成的设计方法,分享IP核开发与系统集成成果,不断重整价值链,在关注面积、延迟、功耗的基础上,向成品率、可靠性、电磁干扰(EMI) 噪声、成本、易用性等转移,使系统级集成能力快速发展。 所谓SoC技术,是一种高度集成化、固件化的系统集成技术。使用SoC技术设计系统的核心思想,就是要把整个套用电子系统全部集成在一个晶片中。在使用SoC技术设计套用系统,除了那些无法集成的外部电路或机械部分以外,其他所有的系统电路全部集成在一起。 核心技术 系统功能集成是SoC的核心技术 在传统的套用电子系统设计中,需要根据设计要求的功能模组对整个系统进行综合,即根据设计要求的功能,寻找相应的积体电路,再根据设计要求的技术指标设计所选电路的连线形式和参数。这种设计的结果是一个以功能积体电路为基础,器件分散式的套用电子系统结构。设计结果能否满足设计要求不仅取决于电路晶片的技术参数,而且与整个系统PCB版图的电磁兼容特性有关。同时,对于需要实现数位化的系统,往往还需要有单片机等参与,所以还必须考虑分散式系统对电路固件特性的影响。很明显,传统套用电子系统的实现采用的是分布功能综合技术。 对于SoC来说,套用电子系统的设计也是根据功能和参数要求设计系统,但与传统方法有着本质的差别。SoC不是以功能电路为基础的分散式系统综合技术。而是以功能IP为基础的系统固件和电路综合技术。首先,功能的实现不再针对功能电路进行综合,而是针对系统整体固件实现进行电路综合,也就是利用IP技术对系统整体进行电路结合。其次,电路设计的最终结果与IP功能模组和固件特性有关,而与PCB板上电路分块的方式和连线技术基本无关。因此,使设计结果的电磁兼容特性得到极大提高。换句话说,就是所设计的结果十分接近理想设计目标。 SoC设计的关键技术主要包括汇流排架构技术、IP核可复用技术、软硬体协同设计技术、SoC验证技术、可测性设计技术、低功耗设计技术、超深亚微米电路实现技术等,此外还要做嵌入式软体移植、开发研究,是一门跨学科的新兴研究领域。 设计思想 固件集成是SoC的基础设计思想 在传统分散式综合设计技术中,系统的固件特性往往难以达到最优,原因是所使用的是分散式功能综合技术。一般情况下,功能积体电路为了满足尽可能多的使用面,必须考虑两个设计目标:一个是能满足多种套用领域的功能控制要求目标;另一个是要考虑满足较大范围套用功能和技术指标。因此,功能积体电路(也就是定制式积体电路)必须在I/O和控制方面附加若干电路,以使一般用户能得到尽可能多的开发性能。但是,定制式电路设计的套用电子系统不易达到最佳,特别是固件特性更是具有相当大的分散性。 对于SoC来说,从SoC的核心技术可以看出,使用SoC技术设计套用电子系统的基本设计思想就是实现全系统的固件集成。用户只须根据需要选择并改进各部分模组和嵌入结构,就能实现充分最佳化的固件特性,而不必花时间熟悉定制电路的开发技术。固件基础的突发优点就是系统能更接近理想系统,更容易实现设计要求。 基本结构 嵌入式系统是SoC的基本结构 在使用SoC技术设计的套用电子系统中,可以十分方便地实现嵌入式结构。各种嵌入结构的实现十分简单,只要根据系统需要选择相应的核心,再根据设计要求选择之相配合的IP模组,就可以完成整个系统硬体结构。尤其是采用智慧型化电路综合技术时,可以更充分地实现整个系统的固件特性,使系统更加接近理想设计要求。必须指出,SoC的这种嵌入式结构可以大大地缩短套用系统设计开发周期。 设计基础 IP是SoC的设计基础 传统套用电子设计工程师面对的是各种定制式积体电路,而使用SoC技术的电子系统设计工程师所面对的是一个巨大的IP库,所有设计工作都是以IP模组为基础。SoC技术使套用电子系统设计工程师变成了一个面向套用的电子器件设计工程师西叉欧。由此可见,SoC是以IP模组为基础的设计技术,IP是SoC套用的基础。 设计过程 SoC技术中的不同阶段 用SoC技术设计套用电子系统的几个阶段如图1所示。在功能设计阶段,设计者必须充分考虑系统的固件特性,并利用固件特性进行综合功能设计。当功能设计完成后,就可以进入IP综合阶段。IP综合阶段的任务利用强大的IP库实现系统的功能IP结合结束后,首先进行功能仿真,以检查是否实现了系统的设计功能要求。功能仿真通过后,就是电路仿真,目的是检查IP模组组成的电路能否实现设计功能并达到相应的设计技术指标。设计的最后阶段是对制造好的SoC产品进行相应的测试,以便调整各种技术参数,确定套用参数。 设计方法学 1、设计重用技术 数百万门规模的系统级晶片设计,不能一切从头开始,要将设计建立在较高的层次上。需要更多地采用IP复用技术,只有这样,才能较快地完成设计,保证设计成功,得到价格低的 SoC,满足市场需求。 设计再利用是建立在芯核(CORE)基础上的,它是将己经验证的各种超级宏单元模组电路制成芯核,以便以后的设计利用。芯核通常分为三种,一种称为硬核,具有和特定工艺相连系的物理版图,己被投片测试验证。可被新设计作为特定的功能模组直接调用。第二种是软核,是用硬体描述语言或C语言写成,用于功能仿真。第三种是固核(firm core),是在软核的基础上开发的,是一种可综合的并带有布局规划的软核。设计时候覆用方法在很大程度上要依靠固核,将RTL级描述结合具体标准单元库进行逻辑综合最佳化,形成门级网表,再通过布局布线工具最终形成设计所需的硬核。这种软的RTL综合方法提供一些设计灵活性,可以结合具体套用,适当修改描述,并重新验证,满足具体套用要求。另外随着工艺技术的发展,也可利用新的库重新综合最佳化、布局布线、重新验证以获得新工艺条件下的硬核。用这种方法实现设计再利用和传统的模组设计方法相比其效率可以提高2-3倍,因此,035um工艺以前的设计再利用多用这种RTL软核 2、综合方法实现 随着工艺技术的发展,深亚微米(DSM)使系统级晶片更大更复杂。这种综合方法将遇到新的问题,因为随着工艺向018um或更小尺寸发展,需要精确处理的不是门延迟而是互连线延迟。再加之数百兆的时钟频率,信号间时序关系十分严格,因此很难用软的RTL综合方法达到设计再利用的目的。 建立在芯核基础上的系统级晶片设计,使设计方法从电路设计转向系统设计,设计重心将从今天的逻辑综合、门级布局布线、后模拟转向系统级模拟,软硬体联合仿真,以及若干个芯核组合在一起的物理设计。迫使设计业向两极分化,一是转向系统,利用IP设计高性能高复杂的专用系统。另一方面是设计DSM下的芯核步入物理层设计,使DSM芯核 能更好并可预测。 3、低功耗的设计技术 系统级晶片因为百万门以上的集成度和数百兆时钟频率下工作,将有数十瓦乃至上百瓦的功耗。巨大的功耗给使用封装以及可靠性方面都带来问题,因此降低功耗的设计是系统级晶片设计的必然要求。设计中应从多方面着手降低晶片功耗。 套用动态 2014年8月20日,国产彩电巨头创维在京召开以“见证奇G的时刻”为主题的新品发布会,高调发布全球首款GLED电视。此次发布会堪称重量级,不仅创维集团高层领导悉数出席,更是邀请到工信部刁司长,以及国内160余家主流媒体及行业专家。 会上工信部刁司长发表了讲话,讲话内容表示:创维集团与华为海思以项目为纽带结成了紧密的合作伙伴,并成功研制我国首款自主研发并成功实现量产的高端智慧型电视晶片,晶片性能优于市场同类晶片,对改变我国彩电行业缺芯少屏的局面,提升电子信息产业核心竞争力有着重要的意义! 2014年8月21日《新闻联播》报导:“中国本土企业创维联合海思自主研发的智慧型电视SOC晶片研制成功并首次实现量产。搭载这款晶片的创维GLED新品的系统速度、解码能力等智慧型电视核心性能居行业领先水平。”同时,创维此“智慧型电视SOC晶片研发及产业化”项目已经申报“核心电子器件、高端通用晶片及基础软体产品”国家科技重大专项(简称“核高基重大专项”)课题,创维将与海思在晶片定义、晶片验证、晶片的整机研发和产业化等核心领域展开深度合作。首批搭载此晶片的创维G8200系列新品4000台已于2014年8月20日上市。
晶片和芯片的区别是:
1、原材料构造不同:晶片为LED的主要原材料,晶片可以自由发光;芯片是一种固态的半导体器件,就是一个P-N结,它可以直接把电转化为光。
2、组成不同:晶片的组成:要有砷、铝、镓、铟、磷、氮、锶这几种元素中的若干种组成;芯片的组成:由金垫、P极、N极、PN结、背金层构成(双pad芯片无背金层)组成。
3、分类不同:晶片可以按照发光亮度、组成元素进行分类;芯片可以按照用途、颜色、形状、大小进行不同的分类。
集成电路(英语:integratedcircuit,缩写作IC),或称微电路(microcircuit)、微芯片(microchip)、晶片/芯片(chip)在电子学中是一种把电路(主要包括半导体设备,也包括被动组件等)小型化的方式,并时常制造在半导体晶圆表面上。晶体管发明并大量生产之后,各式固态半导体组件如二极管、晶体管等大量使用,取代了真空管在电路中的功能与角色。到了20世纪中后期半导体制造技术进步,使得集成电路成为可能。
区别:
集成电路、或称微电路、 微芯片、芯片(在电子学中是一种把电路(主要包括半导体设备,也包括被动组件等)小型化的方式,并通常制造在半导体晶圆表面上。前述将电路制造在半导体芯片表面上的集成电路又称薄膜集成电路。另有一种厚膜混成集成电路是由独立半导体设备和被动组件,集成到衬底或线路板所构成的小型化电路。
晶片是LED最主要的原物料之一,是LED的发光部件,LED最核心的部分,晶片的好坏将直接决定LED的性能。晶片是由是由Ⅲ和Ⅴ族复合半导体物质构成。在LED封装时,晶片来料呈整齐排列在晶片膜上。
晶片一般是指由单晶硅切割成的薄片,直径有6英寸、8英寸、12英寸等规格,主要用来生产集成电路。晶片只是原料,芯片是成品。
芯片是由晶体管、电阻、电容通过联线,刻在晶圆上,最后封装而成。
晶片是LED最主要的原物料之一,是LED的发光部件,LED最核心的部分,晶片的好坏将直接决定LED的性能。晶片是由是由Ⅲ和Ⅴ族复合半导体物质构成。在LED封装时,晶片来料呈整齐排列在晶片膜上。
以上就是关于为什么现在的晶片(wafer)越做越大全部的内容,包括:为什么现在的晶片(wafer)越做越大、碳化硅外延晶片概念是什么适用于什么领域、行业、soc(系统级晶片)详细资料大全等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!