锂电池原理

杜邦线2023-05-07  36

锂离子电池的正极材料通常有锂的活性化合物组成,负极则是特殊分子结构的碳。常见

的正极材料主要成分为 LiCoO2 ,充电时,加在电池两极的电势迫使正极的化合物释出锂离

子,嵌入负极分子排列呈片层结构的碳中。放电时,锂离子则从片层结构的碳中析出,重新

和正极的化合物结合。锂离子的移动产生了电流。

化学反应原理虽然很简单,然而在实际的工业生产中,需要考虑的实际问题要多得多:

正极的材料需要添加剂来保持多次充放的活性,负极的材料需要在分子结构级去设计以容纳

更多的锂离子;填充在正负极之间的电解液,除了保持稳定,还需要具有良好导电性,减小

电池内阻。

虽然锂离子电池很少有镍镉电池的记忆效应,记忆效应的原理是结晶化,在锂电池中几

乎不会产生这种反应。但是,锂离子电池在多次充放后容量仍然会下降,其原因是复杂而多

样的。主要是正负极材料本身的变化,从分子层面来看,正负极上容纳锂离子的空穴结构会

逐渐塌陷、堵塞;从化学角度来看,是正负极材料活性钝化,出现副反应生成稳定的其他化

合物。物理上还会出现正极材料逐渐剥落等情况,总之最终降低了电池中可以自由在充放电

过程中移动的锂离子数目。

过度充电和过度放电,将对锂离子电池的正负极造成永久的损坏,从分子层面看,可以直观

的理解,过度放电将导致负极碳过度释出锂离子而使得其片层结构出现塌陷,过度充电将把

太多的锂离子硬塞进负极碳结构里去,而使得其中一些锂离子再也无法释放出来。这也是锂

离子电池为什么通常配有充放电的控制电路的原因。

不适合的温度,将引发锂离子电池内部其他化学反应生成我们不希望看到的化合物,所

以在不少的锂离子电池正负极之间设有保护性的温控隔膜或电解质添加剂。在电池升温到一

定的情况下,复合膜膜孔闭合或电解质变性,电池内阻增大直到断路,电池不再升温,确保

电池充电温度正常。

而深充放能提升锂离子电池的实际容量吗?专家明确地告诉我,这是没有意义的。他们

甚至说,所谓使用前三次全充放的“激活”,在他们两位博士的知识里,也想不通这有什么

必要。然而为什么很多人深充放以后 Battery Information 里标示容量会发生改变呢 后

面将会提到。

锂离子电池一般都带有管理芯片和充电控制芯片。其中管理芯片中有一系列的寄存器,

存有容量、温度、 ID 、充电状态、放电次数等数值。这些数值在使用中会逐渐变化。我个

人认为,使用说明中的“使用一个月左右应该全充放一次”的做法主要的作用应该就是修正

这些寄存器里不当的值,使得电池的充电控制和标称容量吻合电池的实际情况。

充电控制芯片主要控制电池的充电过程。锂离子电池的充电过程分为两个阶段,恒流快

充阶段(电池指示灯呈**时)和恒压电流递减阶段 ( 电池指示灯呈绿色闪烁。恒流快充

阶段,电池电压逐步升高到电池的标准电压,随后在控制芯片下转入恒压阶段,电压不再升

高以确保不会过充,电流则随着电池电量的上升逐步减弱到 0 ,而最终完成充电。

电量统计芯片通过记录放电曲线(电压,电流,时间)可以抽样计算出电池的电量,这

就是我们在 Battery Information 里读到的 wh 值。而锂离子电池在多次使用后,放电曲

线是会改变的,如果芯片一直没有机会再次读出完整的一个放电曲线,其计算出来的电量也

就是不准确的。所以我们需要深充放来校准电池的芯片。

最后我对电池的保养的看法是:

1 不必刻意保证每一次都放完电了再充;

2 一段时间可做一次保护电路控制下的深充放以修正电池的电量统计,但这不会提高

你电池的实际容量。

3 长期不用的电池,应放在阴凉的地方以减弱其内部自身钝化反应的速度。

4 保护电路也无力监控电池的自放电,长期不用的电池,应充入一定的电量以防电池

在存贮中自放电过量导致过度放电的损坏。

其实电池没有太多要顾及的使用注意,换句话说是顾及也没有太大用。一个电池能使用

多少次,也许差别更多的来自电池本身制造中的个体差异,而不是使用方法。选择具有良好

锂电池是前几年出现的金属锂蓄电池的替代产品,它的阳极采用能吸藏锂离子的碳极,充电时,阴极中锂原子电离成锂离子和电子,并且锂离子向阳极运动与电 子合成锂原子。放电时,锂原子从石墨晶体内阳极表面电离成锂离子和电子,并在阴极处合成锂原子。

扩展资料:

工作原理

锂金属电池:

锂金属电池一般是使用二氧化锰为正极材料、金属锂或其合金金属为负极材料、使用非水电解质溶液的电池。

放电反应:Li+MnO2=LiMnO2

锂离子电池:

锂离子电池一般是使用锂合金金属氧化物为正极材料、石墨为负极材料、使用非水电解质的电池。

充电正极上发生的反应为

LiCoO2==Li(1-x)CoO2+XLi++Xe-(电子)

充电负极上发生的反应为

6C+XLi++Xe- = LixC6

充电电池总反应:LiCoO2+6C = Li(1-x)CoO2+LixC6

参考资料来源:百度百科-锂电池

锂离子电池电化学反应机理锂离子电池电化学反应机理锂离子电池电化学反应机理锂离子电池电化学反应机理

一个锂离子电池主要由正极、负极、电解液及隔膜组成,外加正负极引线,安全阀,PTC(正温度控制端子),电池壳等。虽然锂离子电池种类繁多,但其工作原理大致相同。充电时,锂离子从正极材料中脱嵌,经过隔膜和电解液,嵌入到负极材料中,放电以相反过程进行。以典型的液态锂离子为例,当以石墨为负极材料,以LiCoO2为正极材料时,其充放电原理为:

正极反应:LiCoO2==

Li1-xCoO2

+

xLi+

+

xe-

负极反应:6C

+

xLi+

+

xe-

==

LixC6

电池总反应:LiCoO2

+

6C

==Li1-xCoO2

+

LixC6

放电时发生上述反应的逆反应。

充电时,Li+从LiCoO2中发生脱嵌,释放一个电子,C3+被氧化为C4

+,与此同时,Li+经过隔膜和电解液迁移到负极石墨表面,进而插入到石墨结构中,石墨结构同时得到一个电子,形成锂—碳层间化合物LixC6,放电时过程则相反,Li+从石墨结构脱插,嵌入到正极LiCoO2中。

作用机理

锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表示,而负极用插入或脱插表示)。在充放电过程中,锂离子在正、负极之间往返嵌入/脱嵌和插入/脱插,被形象地称为“摇椅电池”。

当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。

一般锂电池充电电流设定在02C至1C之间,电流越大,充电越快,同时电池发热也越大。而且,过大的电流充电,容量不够满,因为电池内部的电化学反应需要时间。就跟倒啤酒一样,倒太快的话会产生泡沫,反而不满。

使用(放电)注意事项

对电池来说,正常使用就是放电的过程。锂电池放电需要注意几点:

第一,放电电流不能过大,过大的电流导致电池内部发热,有可能会造成永久性的损害。在手机上,这个倒是没有问题的,可以不考虑。

从右图上可以看出,电池放电电流越大,放电容量越小,电压下降更快。

第二,绝对不能过放电!锂电池内部存储电能是靠电化学一种可逆的化学变化实现的,过度的放电会导致这种化学变化有不可逆的反应发生,因此锂电池最怕过放电,一旦放电电压低于27V,将可能导致电池报废。好在手机电池内部都已经装了保护电路,电压还没低到损坏电池的程度,保护电路就会起作用,停止放电。

锂离子电池的正极材料是氧化钴锂,负极是碳。

锂离子电池的工作原理就是指其充放电原理。当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,到达负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。

同样道理,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回到正极。回到正极的锂离子越多,放电容量越高。我们通常所说的电池容量指的就是放电容量。

铅酸电池充电器

不能充锂电池

因为它的充电方式与锂电池充电方式不同。

千万不要用它来对锂电池充电,街上的快速充电也千万不要对锂电池充电,会发生危险的。

磷酸铁锂电池的全名是磷酸铁锂锂离子电池,这名字太长,简称为磷酸铁锂电池。由于它的性能特别适于作动力方面的应用,则在名称中加入“动力”两字,即磷酸铁锂动力电池。也有人把它称为“锂铁(LiFe)动力电池”。

意义

金属交易市场,钴(Co)最贵,并且存储量不多,镍(Ni)、锰(Mn)较便宜,而铁(Fe)最便宜。正极材料的价格也与这些金属的价格行情一致。因此,采用LiFePO4正极材料做成的锂离子电池应是最便宜的。它的另一个特点是对环境无污染。

作为充电电池的要求是:容量高、输出电压高、良好的充放电循环性能、输出电压稳定、能大电流充放电、电化学稳定性能、使用中安全(不会因过充电、过放电及短路等操作不当而引起燃烧或爆炸)、工作温度范围宽、无毒或少毒、对环境无污染。采用LiFePO4作正极的磷酸铁锂电池在这些性能要求上都不错,特别在大放电率放电(5~10C放电)、放电电压平稳上、安全上(不燃烧、不爆炸)、寿命上(循环次数)、对环境无污染上,它是最好的,是目前最好的大电流输出动力电池。

结构与工作原理

LiFePO4电池的内部结构如图1所示。左边是橄榄石结构的LiFePO4作为电池的正极,由铝箔与电池正极连接,中间是聚合物的隔膜,它把正极与负极隔开,但锂离子Li+可以通过而电子e-不能通过,右边是由碳(石墨)组成的电池负极,由铜箔与电池的负极连接。电池的上下端之间是电池的电解质,电池由金属外壳密闭封装。

图1 LiFePO4电池内部结构

LiFePO4电池在充电时,正极中的锂离子Li+通过聚合物隔膜向负极迁移;在放电过程中,负极中的锂离子Li+通过隔膜向正极迁移。锂离子电池就是因锂离子在充放电时来回迁移而命名的。

主要性能

LiFePO4电池的标称电压是32V、终止充电电压是36V、终止放电压是20V。由于各个生产厂家采用的正、负极材料、电解质材料的质量及工艺不同,其性能上会有些差异。例如同一种型号(同一种封装的标准电池),其电池的容量有较大差别(10%~20%)。

磷酸铁锂动力电池主要性能列于表1。为了与其他可充电电池的相比较,也在表中列出其他种类可充电电池性能。这里要说明的是,不同工厂生产的磷酸铁锂动力电池在各项性能参数上会有一些差别;另外,有一些电池性能未列入,如电池内阻、自放电率、充放电温度等。

表1 磷酸铁锂动力电池主要性能参数

磷酸铁锂动力电池的容量有较大差别,可以分成三类:小型的零点几到几毫安时、中型的几十毫安时、大型的几百毫安时。不同类型电池的同类参数也有一些差异。这里再介绍一种目前应用较广的小型标准圆柱形封装的磷酸铁锂动力电池的参数。其外廓尺寸:直径为18mm、高650mm(型号为18650),其参数性能如表2所示。

表2 小型标准圆柱形封装的磷酸铁锂动力电池的参数

过放电到零电压试验

采用STL18650(1100mAh)的磷酸铁锂动力电池做过放电到零电压试验。试验条件:用05C充电率将1100mAh的STL18650电池充满,然后用10C放电率放电到电池电压为0C。再将放到0V的电池分两组:一组存放7天,另一组存放30天;存放到期后再用05C充电率充满,然后用10C放电。最后比较两种零电压存放期不同的差别。

试验的结果是,零电压存放7天后电池无泄漏,性能良好,容量为100%;存放30天后,无泄漏、性能良好,容量为98%;存放30天后的电池再做3次充放电循环,容量又恢复到100%。

这试验说明该电池 即使出现过放电(甚至到0V),并存放一定时间,电池也不泄漏、损坏。这是其他种类锂离子电池不具有的特性。

了解锂电池工作原理之前,先大概了解下锂电池的组成部分,如下示意图:

锂离子电池电池组成部分如下:

(1)正极——活性物质一般为锰酸锂或者钴酸锂,镍钴锰酸锂材料,电动自行车则普遍用镍钴锰酸锂(俗称三元)或者三元+少量锰酸锂,纯的锰酸锂和磷酸铁锂则由于体积大、性能不好或成本高而逐渐淡出。导电极流体使用厚度10--20微米的电解铝箔。

(2)隔膜——种经特殊成型的高分子薄膜,薄膜有微孔结构,可以让锂离子自由通过,而电子不能通过。

(3)负极——活性物质为石墨,或近似石墨结构的碳,导电集流体使用厚度7-15微米的电解铜箔。

(4)有机电解液——溶解有六氟磷酸锂的碳酸酯类溶剂,聚合物的则使用凝胶状电解液。

(5)电池外壳——分为钢壳(方型很少使用)、铝壳、镀镍铁壳(圆柱电池使用)、铝塑膜(软包装)等,还有电池的盖帽,也是电池的正负极引出端。

二、锂电池工作原理图解

下面从锂电池充电过程、放电过程和电池保护板三大部分给大家介绍其工作原理:

1、锂电池充电过程

电池的正极由锂离子生成,生成的锂离子从正极“跳进”电解液里,通过电解液“爬过”隔膜上弯弯曲曲的小洞,运动到负极,与早就通过外部电路跑到负极的电子结合在一起。●正极上发生的反应为:LiCoO2==充电==Li1-xCoO2+Xli++Xe(电子)●负极上发生的反应为:6C+XLi++Xe=====LixC6在充电的过程中,Li+从正极LiCoO2中脱出,进入电解液,在充电器附加的外电场作用下向负极移动,依次进入石墨或焦炭C组成的负极,在负极形成LiC化合物。

2、锂电池放电过程

放电时电子和Li+都是同时行动的,方向相同但路径不同,电子从负极通过外部电路跑到正极;锂离子Li+从负极“跳进”电解液里,“爬过”隔膜上弯弯曲曲的小洞,“游泳”到达正极,与早就跑过来的电子结合在一起。我们通常所说的电池容量指的就是放电容量。

以上就是关于锂电池原理全部的内容,包括:锂电池原理、锂电池充电和放电原理是什么、锂离子电池的工作原理是怎样的等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3828337.html

最新回复(0)