圆周率是什么


圆周率是指平面上圆的周长与直径之比 (ratio of the circumference of a circle to the diameter) 。用符圆周率即圆的周长与其直径的比。通常用π来表示。

公元前1650年,埃及人著的兰德纸草书中提出π=(4/3) 3=31604但是对π的第一次科学的尝试应归功于阿基米德。

阿基米德计算π值是采用内接和外切正多边形的方法。数学上一般把它称为计算机的古典方法。

在公元前3世纪,古希腊的数学非常发达,为了使得数学计算简便,人们选一个以长度为直径的圆。这样圆的周长在任何内接正多边形的周长和任何外切正多边形的周长之间。这样就容易得到π的上下界,因为计算内接和外切正多边形的财长比较简单。阿基米德也掌握了这一原理。他从内接和外切严六边形开始,按照这个方法逐次进行下去,就得出12、24、38、96边的内拉和外切正多边形的财长,他利用这一方法最后得到π值在223/71,22/7之间,取值为314。这一方法和数值发表在他的论文集》圆的量度中。

公元150年,希腊数学家托勒玫著有《数学汇编》一书。在这本书中,他认为π377/120后者取值为31416。他的这一计算结果是由弦表扒出来的。在他的弦表中给出了圆心角(每个角间隔一度和半度)所对的圆的弦长。如果把1度圆心角所对的弦长乘以260,再用圆的直径除它,就得到π值。

其实,我国古代的数学名著《九间算术》中,就有了π的应用,求圆田面积的公式为S=3/4D 2orS=1/12p 2其中D为直径,P为圆周长。公元130年前,东汉天文学家张衡计算的π值达到31622,即√10,他是世界上第一个采用π=√10的人。到了公元3世纪,三国时期著名的天文学家、数学家王蕃取π=142/45或31555。

我国古代第一个把扒求圆周率近似值的方法提高到理论高度上来认识的是刘微。他独立地创造了“割圆术”,并系统而严密地用内接正多边形来求得圆周率的近似值,他从内接正六边形算起,计算到圆内接正192边形的面积,从而得出3141024<π<3142704这一值,后来他沿着这一思路继续前进,一地算到圆内接正3072边形时,得到了π=3927/1250,π的值给为314159。这是当时得到的最精确的取值。

南北朝时期,我国的大数学家祖冲之采用刘徽的割圆术,一直扒算到圆内接正24576边形,从而推得:

31415926<π<31415927

这一成果记载在他的著作《缀术》中。可惜的是,这本书已经失传。为了应用方便,祖冲之对圆周率还给出了两个分数值355/113和22/7,前者称之为“密率”,后者称之为“给率”。其中“密率”355/133是一个很有趣的数字,分母分子恰好是三个最小奇数的重复,既整齐美观、又便于记忆。355/113=3+4 2/(7 2+8 2)也是很巧妙的组合。它与π的实际值相对误差只有9/10^8。

π的这个最佳分数值,欧洲人通常认为是芬兰人安托尼斯首先发现的,所以他们称之为“安托尼斯率”。其实德国数学家奥托在公元1573年已得密率的时间在公元462年以前,这比奥托要早1100多年。为纪念祖冲之对圆周率所的贡献,日本数学史家三上义夫在<中日数学发展史>中建议把π=355/113叫作“祖率”,这种叫法在解放后已通行于中国。

π的更精确的值,一直到公元15世纪,才由伊朗天文学家卡西于1420年求得,把π的精确值计算到小数点后8位。

1579年,著名的法国数学家韦达根据古典方法,用圆内接正393216边形,求得π的值,精确到小数点后9位。

1593年,芬兰人罗梅根据古典方法,把π精确到小数点后15位。

1610年,德国数学家科煞伦根据古典方法,把π精确到小数点后35位。但是他把一生的大部分时间都花在了这项工作上。

到了1621年,荷兰物理学家斯涅留斯把计算π的古典方法加以改进,只要用230边形就可以求得小数点后35位号π(读音:pài)表示。中国古代有圆率、周率、周等名称。(在一般计算时π=314

圆周率是约等于3141592654

计算方法:圆周长÷圆直径

扩展资料

圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。

圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用314代表圆周率去进行近似计算。而用十位小数3141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

1965年,英国数学家约翰·沃利斯(John Wallis)出版了一本数学专著,其中他推导出一个公式,发现圆周率等于无穷个分数相乘的积。

圆周率是"圆的曲线周长与直径的比值"。但是圆的内接正6x2ⁿ边形的折线周长与过中心点的对角线(也是它外接圆的直径)的比值314就不是圆周率了,而是正6x2ⁿ边率。

因为圆的曲线周长与直径的比是6+2√3比3(也就是圆的直径是3个点的点径之和时,它所对应圆的曲线周长c是圆面上外围点根据曲线性质排列一周的6个点加上重叠的点径2√3之和)

所以圆周率是(6+2√3)/3或(约等于31547005)(也就是直径d为3时,对应圆的曲线周长c就是6+2√3)。

为此,圆周率π只有唯一一个值、那就是(6+2√3)/3(或约等于31547005383)

而所谓的圆周率π=31415926原本是正6x2ⁿ边形的折线周长与过中心点的对角线的比值应叫正6x2ⁿ边率。

因为任一个正6x2ⁿ边形的折线周长都小于它外接圆的曲线周长,所以正6x2ⁿ边率31415926必然小于圆周率(31547005)。hpfykg组织创作

圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。 在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。

圆周率用希腊字母 π(读作pài)表示,是一个常数(约等于3141592654),是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用314代表圆周率去进行近似计算。而用十位小数3141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。

扩展资料:

圆周率一般定义为一个圆形的周长(  )与直径(  )之比:  ,或直接定义为单位圆的周长的一半。由相似图形的性质可知,对于任何圆形,  的值都是一样,这样就定义出常数  。

把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果以39位精度的圆周率值,来计算宇宙的大小,误差还不到一个原子的体积。

以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年兰伯特证明了圆周率是无理数,1882年林德曼证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。

参考资料:

百度百科-圆周率

HPFYKG认为:

只有通过圆的周长与直径的比计算出的比值(6+2√3)/3才是圆周率。

凡是通过圆内接正n边形的周长与直径的比计算出的比值31415926都是正n边率。

圆周率是用圆的周长除以它的直径计算出来的。“圆周率”即圆的周长与其直径之间的比率。

1、圆周率是一个超越数,它不但是无理数,而且比无理数还要无理。无理数有一个特点,就是小数部分是无限的,而且是不循环的。比如09的循环小数,这个虽然无限,但是重复的。而圆周率则是无限,而且数字不会重复,因此圆周率看起来非常长的一串数字。

2、阿基米德是最早得出圆周率大约等于314的人。传说在他临死时被罗马士兵逼到一个海滩,还在海滩上计算圆周率,并且对士兵说:“你先不要杀我,我不能给后世留下一个不完善的几何问题。”阿基米德计算圆周率的方法是双侧逼近:使用圆的内接正多边形和外切正多边形的周长来近似圆的周长。正多边形的边数越多,多边形周长就越接近圆的边长。

3、以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。现在的人计算圆周率,多数是为了验证计算机的计算能力,还有,就是为了兴趣。

以上就是关于圆周率是什么全部的内容,包括:圆周率是什么、圆周率是多少、圆周率是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3825476.html

最新回复(0)