正常的话,下面“DirectX功能”框里的DirectDraw加速、Direct3D加速、AGP纹理加速应该都是“已启用”状态,这时你的电脑的显示系统没有问题,玩大型游戏、用CAD软件等,应该都可以正常使用。
但是有一部分人的DirectX加速功能是不可用状态,怎么修复呢?其实可以分成如下两步。
步骤一,确定你的显卡驱动是否正常。
首先,点开开始按钮,在搜索框里输入“dxdiag”
步骤二,使用DirectX修复工具手动开启你的DirectX加速。
通过步骤一的判断,我们已经知道我的系统的显卡驱动是正常的,但是为什么DirectDraw加速、Direct3D加速、AGP纹理加速还是已经用或不可用的状态呢?原因比较多,也比较复杂,这里不想展开讲,这里只是给大家介绍一下解决办法。对于DirectX加速被禁用的问题,我们需要使用神器——DirectX修复工具
这时我们打开“工具”菜单下的“选项”菜单
打开后找到“DirectX加速”选项卡
在DirectX修复工具中,有一个和DirectX诊断工具非常类似的界面,也是显示的是Direct加速功能,但是和DirectX诊断工具不同的是,DirectX修复工具里面多了一个“启用”按钮。
这里还要说一下,有的人在DirectX修复工具中启用这些加速功能后,在DirectX诊断工具里看到的还是已禁用状态,这时只要把DirectX诊断工具关闭,在到开始菜单重新开启dxdiag程序,即可看到正常的状态。这时试一下我们的程序,应该已经正常了。
总结
1、解决DirectX加速不可用、已禁用问题需要分成2步,第1步需要先确定显卡驱动是否装好,第2步再用DirectX修复工具进行开启。如果你的第1步没做或是做的有问题,那么第2步无论怎么做也是解决不了的。
2、如果你的DirectX加速已经完全正常了,但是玩游戏还是出现缺文件(如d3dx9_42dll , xinput1_3dll等)、0xc000007b错误等,可以用上边提到的 DirectX修复工具增强版 进行解决。
DirectX是一种图形应用程序接口(API),简单的说它是一个辅助软件,一个提高系统性能的加速软件,由微软创建开发的,微软将定义它为“硬件设备无关性”。Direct是直接的意思,X是很多东西,加在一起就是一组具有共性的东西,从内部原理探讨,也简单说来DirectX 就是一系列的 DLL (动态连接库),通过这些 DLL,开发者可以在无视于设备差异的情况下访问底层的硬件,DirectX 封装了一些 COM(Component Object Model)对象,这些 COM 对象为访问系统硬件提供了一个主要的接口。
DirectX并不是一个单纯的图形API,它是由微软公司开发的用途广泛的API,它包含有Direct Graphics(Direct 3D+Direct Draw)、Direct Input、Direct Play、Direct Sound、Direct Show、Direct Setup、Direct Media Objects等多个组件,它提供了一整套的多媒体接口方案。只是其在3D图形方面的优秀表现,让它的其它方面显得暗淡无光。DirectX开发之初是为了弥补Windows 31系统对图形、声音处理能力的不足,而今已发展成为对整个多媒体系统的各个方面都有决定性影响的接口。
DirectX 10
第一代的DirectX很不成功,推出时众多的硬件均不支持,当时基本都采用专业图形API-OpenGL,缺乏硬件的支持成了其流行的最大障碍。
DirectX 10版本是第一个可以直接对硬件信息进行读取的程序。它提供了更为直接的读取图形硬件的性能(比如:显示卡上的块移动功能)以及基本的声音和输入设备功能(函数),使开发的游戏能实现对二维(2D)图像进行加速。这时候的DirectX不包括现在所有的3D功能,还处于一个初级阶段。
DirectX 20
DirectX 20在二维图形方面做了些改进,增加了一些动态效果,采用了Direct 3D的技术。这样DirectX 20与DirectX 10有了相当大的不同。在DirectX 20中,采用了“平滑模拟和RGB模拟”两种模拟方式对三维(3D)图像进行加速计算的。DirectX 20同时也采用了更加友好的用户设置程序并更正了应用程序接口的许多问题。从DirectX 20开始,整个DirectX的设计架构雏形就已基本完成。
DirectX 30
DirectX 30的推出是在1997年最后一个版本的Windows95发布后不久,此时3D游戏开始深入人心,DirectX也逐渐得到软硬件厂商的认可。97年时应用程序接口标准共有三个,分别是专业的OpenGL接口,微软的DirectX D接口和3DFX公司的Glide接口。而那时的3DFX公司是最为强大的显卡制造商,它的Glide接口自然也受到最广泛的应用,但随着3DFX公司的没落,Voodoo显卡的衰败,Glide接口才逐渐消失了。
DirectX 30是DirectX 20的简单升级版,它对DirectX 20的改动并不多。包括对DirectSound(针对3D声音功能)和DirectPlay(针对游戏/网络)的一些修改和升级。DirectX 30集成了较简单的3D效果,还不是很成熟。
DirectX 50
微软公司并没有推出DirectX 40,而是直接推出了DirectX 50。此版本对Direct3D做出了很大的改动,加入了雾化效果、Alpha混合等3D特效,使3D游戏中的空间感和真实感得以增强,还加入了S3的纹理压缩技术。
同时,DirectX 50在其它各组件方面也有加强,在声卡、游戏控制器方面均做了改进,支持了更多的设备。因此,DirectX发展到DirectX 50才真正走向了成熟。此时的DirectX性能完全不逊色于其它3D API,而且大有后来居上之势。
DirectX 60
DirectX 60推出时,其最大的竞争对手之一Glide,已逐步走向了没落,而DirectX则得到了大多数厂商的认可。DirectX 60中加入了双线性过滤、三线性过滤等优化3D图像质量的技术,游戏中的3D技术逐渐走入成熟阶段。
DirectX 70
DirectX 70最大的特色就是支持T&L,中文名称是“坐标转换和光源”。3D游戏中的任何一个物体都有一个坐标,当此物体运动时,它的坐标发生变化,这指的就是坐标转换;3D游戏中除了场景+物体还需要灯光,没有灯光就没有3D物体的表现,无论是实时3D游戏还是3D影像渲染,加上灯光的3D渲染是最消耗资源的。虽然OpenGL中已有相关技术,但此前从未在民用级硬件中出现。
在T&L问世之前,位置转换和灯光都需要CPU来计算,CPU速度越快,游戏表现越流畅。使用了T&L功能后,这两种效果的计算用显示卡的GPU来计算,这样就可以把CPU从繁忙的劳动中解脱出来。换句话说,拥有T&L显示卡,使用DirectX 70,即使没有高速的CPU,同样能流畅的跑3D游戏。
DirectX 80
DirectX 80的推出引发了一场显卡革命,它首次引入了“像素渲染”概念,同时具备像素渲染引擎(Pixel Shader)与顶点渲染引擎(Vertex Shader),反映在特效上就是动态光影效果。同硬件T&L仅仅实现的固定光影转换相比,VS和PS单元的灵活性更大,它使GPU真正成为了可编程的处理器。这意味着程序员可通过它们实现3D场景构建的难度大大降低。通过VS和PS的渲染,可以很容易的宁造出真实的水面动态波纹光影效果。此时DirectX的权威地位终于建成。
DirectX 90
2002年底,微软发布DirectX90。DirectX 9中PS单元的渲染精度已达到浮点精度,传统的硬件T&L单元也被取消。全新的VertexShader(顶点着色引擎)编程将比以前复杂得多,新的VertexShader标准增加了流程控制,更多的常量,每个程序的着色指令增加到了1024条。
PS 20具备完全可编程的架构,能对纹理效果即时演算、动态纹理贴图,还不占用显存,理论上对材质贴图的分辨率的精度提高无限多;另外PS14只能支持28个硬件指令,同时操作6个材质,而PS20却可以支持160个硬件指令,同时操作16个材质数量,新的高精度浮点数据规格可以使用多重纹理贴图,可操作的指令数可以任意长,**级别的显示效果轻而易举的实现。
VS 20通过增加Vertex程序的灵活性,显著的提高了老版本(DirectX8)的VS性能,新的控制指令,可以用通用的程序代替以前专用的单独着色程序,效率提高许多倍;增加循环操作指令,减少工作时间,提高处理效率;扩展着色指令个数,从128个提升到256个。
增加对浮点数据的处理功能,以前只能对整数进行处理,这样提高渲染精度,使最终处理的色彩格式达到**级别。突破了以前限制PC图形图象质量在数学上的精度障碍,它的每条渲染流水线都升级为128位浮点颜色,让游戏程序设计师们更容易更轻松的创造出更漂亮的效果,让程序员编程更容易。
显卡所支持的DirectX版本已成为评价显卡性能的标准,从显卡支持什么版本的DirectX,用户就可以分辨出显卡的性能高低,从而选择出适合于自己的显卡产品。
DirectX,(Direct eXtension,简称DX)是由微软公司创建的多媒体编程接口。由C++编程语言实现,遵循COM。被广泛使用于Microsoft Windows、Microsoft Xbox和Microsoft Xbox 360电子游戏开发,并且只能支持这些平台。最新版本为DirectX 11,创建在最新的Windows 7上。
Microsoft DirectX 是这样一组技术:它们旨在使基于 Windows 的计算机成为运行和显示具有丰富多媒体元素(例如全色图形、视频、3D 动画和丰富音频)的应用程序的理想平台。 DirectX 包括安全和性能更新程序,以及许多涵盖所有技术的新功能。应用程序可以通过使用 DirectX API 来访问这些新功能。
DirectX加强3d图形和声音效果,并提供设计人员一个共同的硬件驱动标准,让游戏开发者不必为每一品牌的硬件来写不同的驱动程序,也降低用户安装及设置硬件的复杂度。从字面意义上说,Direct就是直接的意思,而后边的X则代表了很多的意思,从这一点上我们就可以看出DirectX的出现就是为了为众多软件提供直接服务的。 举个例子,骨灰级玩家(玩游戏比较长的)以前在DOS下玩游戏时,可不像我们现在,安装上就可以玩了,他们往往首先要先设置声卡的品牌和型号,然后还要设置IRQ(中断)、I/O(输入与输出)、DMA(存取模式),如果哪项设置的不对,那么游戏声音就发不出来。这部分的设置不仅让玩家伤透脑筋,而且对游戏开发者来说就更头痛了,因为为了让游戏能够在众多电脑中正确运行,开发者必须在游戏制作之初,便需要把市面上所有声卡硬件数据都收集过来,然后根据不同的 API(应用编程接口)来写不同的驱动程序,这对于游戏制作公司来说,是很难完成的,所以说在当时多媒体游戏很少。微软正是看到了这个问题,为众厂家推出了一个共同的应用程序接口——DirectX,只要这个游戏是依照Directx来开发的,不管你是什么显卡、声卡、统统都能玩,而且还能发挥更佳的效果。当然,前提是你的显卡、声卡的驱动程序也必须支持DirectX才行。
DirectX是由很多API组成的,按照性质分类,可以分为四大部分,显示部分、声音部分、输入部分和网络部分。
显示部分
显示部分担任图形处理的关键,分为DirectDraw(DDraw)和Direct3D(D3D),前者主要负责2D图像加速。它包括很多方面:我们播放mpg、DVD**、看图、玩小游戏等等都是用的DDraw,你可以把它理解成所有划线的部分都是用的DDraw。后者则主要负责3D效果的显示,比如CS中的场景和人物、FIFA中的人物等等,都是使用了DirectX的Direct3D。
声音部分
声音部分中最主要的API是DirectSound,除了播放声音和处理混音之外,还加强了3d音效,并提供了录音功能。我们前面所举的声卡兼容的例子,就是利用了DirectSound来解决的。
输入部分
输入部分DirectInput可以支持很多的游戏输入设备,它能够让这些设备充分发挥最佳状态和全部功能。除了键盘和鼠标之外还可以连接手柄、摇杆、模拟器等。
网络部分
网络部分DirectPlay主要就是为了具有网络功能游戏而开发的,提供了多种连接方式,TCP/IP,IPX,Modem,串口等等,让玩家可以用各种连网方式来进行对战,此外也提供网络对话功能及保密措施。
编辑本段分类
DirectX并不是一个单纯的图形API,它是由微软公司开发的用途广泛的API,它包含有Direct Graphics(Direct 3D+Direct Draw)、Direct Input、Direct Play、Direct Sound、Direct Show、Direct Setup、Direct Media Objects等多个组件,它提供了一整套的多媒体接口方案。只是其在3D图形方面的优秀表现,让它的其它方面显得暗淡无光。DirectX开发之初是为了弥补Windows 31系统对图形、声音处理能力的不足,而今已发展成为对整个多媒体系统的各个方面都有决定性影响的接口。 DirectX 是一组低级“应用程序编程接口 (API)”,可为 Windows 程序提供高性能的硬件加速多媒体支持。Windows 支持 DirectX 80,它能增强计算机的多媒体功能。使用 DirectX 可访问显卡与声卡的功能,从而使程序可提供逼真的三维 (3D) 图形与令人如醉如痴的音乐与声音效果。 DirectX 使程序能够轻松确定计算机的硬件性能,然后设置与之匹配的程序参数。该程序使得多媒体软件程序能够在基于 Windows 的具有 DirectX 兼容硬件与驱动程序的计算机上运行,同时可确保多媒体程序能够充分利用高性能硬件。 DirectX 包含一组 API,通过它能访问高性能硬件的高级功能,如三维图形加速芯片和声卡。这些 API 控制低级功能(其中包括二维 (2D) 图形加速)、支持输入设备(如游戏杆、键盘和鼠标)并控制着混音及声音输出。构成 DirectX 的下列组件支持低级功能: Microsoft DirectDraw Microsoft DirectDraw API 支持快速访问计算机视频适配器的加速硬件功能。它支持在所有视频适配器上显示图形的标准方法,并且使用加速驱动程序时可以更快更直接地访问。DirectDraw 为程序(如游戏和二维图形程序包)以及 Windows 系统组件(如数字视频编解码器)提供了一种独立于设备之外的方法来访问特定显示设备的功能,而不要求用户提供设备功能的其它信息。 Microsoft Direct3D Microsoft Direct3D API (Direct3D) :为大多数新视频适配器内置的 3-D 调色功能提供界面。Direct3D 是一种低级的 3-D API,它为软件程序提供一种独立于设备之外的方法以便与加速器硬件进行有效而强大的通信。Direct3D 包含专用 CPU 指令集支持,从而可为新型计算机提供进一步加速支持。 Microsoft DirectSound Microsoft DirectSound API :为程序和音频适配器的混音、声音播放和声音捕获功能之间提供了链接。DirectSound 为多媒体软件程序提供低延迟混合、硬件加速以及直接访问声音设备等功能。维护与现有设备驱动程序的兼容性时提供该功能。 Microsoft DirectMusic Microsoft DirectMusic API :是 DirectX 的交互式音频组件。与捕获和播放数字声音样本的 DirectSound API 不同,DirectMusic 处理数字音频以及基于消息的音乐数据,这些数据是通过声卡或其内置的软件合成器转换成数字音频的。DirectMusic API 支持以“乐器数字界面 (MIDI)”格式进行输入,也支持压缩与未压缩的数字音频格式。DirectMusic 为软件开发人员提供了创建令人陶醉的动态音轨的能力,以响应软件环境中的各种更改,而不只是用户直接输入更改。 Microsoft DirectInput Microsoft DirectInput API :为游戏提供高级输入功能并能处理游戏杆以及包括鼠标、键盘和强力反馈游戏控制器在内的其它相关设备的输入。 Microsoft DirectPlay Microsoft DirectPlay API: 支持通过调制解调器、Internet 或局域网连接游戏。DirectPlay 简化了对通信服务的访问,并提供了一种能够使游戏彼此通信的方法而不受协议或联机服务的限制。DirectPlay 提供了多种游说服务,可简化多媒体播放器游戏的初始化,同时还支持可靠的通信协议以确保重要游戏数据在网络上不会丢失。DirectPlay 80 的新功能即支持通过网络进行语音通信,从而可大大提高基于多媒体播放器小组的游戏的娱乐性,同时该组件还通过提供与玩游戏的其他人对话的功能而使团体游戏更具魅力。 Microsoft DirectShow Microsoft DirectShow API: 提供了可在您的计算机与 Internet 服务器上进行高品质捕获与回放多媒体文件的功能。DirectShow 支持各种音频与视频格式,包括“高级流式格式 (ASF)”、“音频-视频交错 (AVI)”、“数字视频 (DV)”、“动画专家组 (MPEG)”、“MPEG 音频层 3 (MP3)”、 “Windows 媒体音频/视频 (WMA/WMV)”以及 WAV 文件。DirectShow 还具有视频捕获、DVD 回放、视频编辑与混合、硬件加速视频解码以及调谐广播模拟与数字电视信号等功能。
DirectX安装方法:
1、首先下载Directx组件,这个去官方网站或者前往百度搜索引擎搜索都可以找到;
2、解压下载好的安装文件或者直接进入压缩包双击安装文件;
3、弹出条款说明,点击YES同意进入下一步安装步骤;
4、接下来可以直接在桌面新建一个文件夹,用来存放DX11的文件。弹出框选择新建的文件夹即可,只是组件包的解压目录;
5、解压后进入新建的那个文件夹 找到DXsetup图标并且双击;
6、选择“我接受协议”,并且点击下一步;
7、这样组件就开始安装了,等待安装完毕即可;
8、按快捷键Win+R打开运行窗口,输入Dxdiag;
9、可以核实DirectX版本,那就安装成了。
DirectX并不是一个单纯的图形API,它是由微软公司开发的用途广泛的API,它包含有Direct Graphics(Direct 3D+Direct Draw)、Direct Input、Direct Play、Direct Sound、Direct Show、Direct Setup、Direct Media Objects等多个组件,它提供了一整套的多媒体接口方案。只是其在3D图形方面的优秀表现,让它的其它方面显得暗淡无光。DirectX开发之初是为了弥补Windows 31系统对图形、声音处理能力的不足,而今已发展成为对整个多媒体系统的各个方面都有决定性影响的接口。
DirectX 50
微软公司并没有推出DirectX 40,而是直接推出了DirectX 50。此版本对Direct3D做出了很大的改动,加入了雾化效果、Alpha混合等3D特效,使3D游戏中的空间感和真实感得以增强,还加入了S3的纹理压缩技术。同时,DirectX 50在其它各组件方面也有加强,在声卡、游戏控制器方面均做了改进,支持了更多的设备。因此,DirectX发展到DirectX 50才真正走向了成熟。此时的DirectX性能完全不逊色于其它3D API,而且大有后来居上之势。
DirectX 60
DirectX 60推出时,其最大的竞争对手之一Glide,已逐步走向了没落,而DirectX则得到了大多数厂商的认可。DirectX 60中加入了双线性过滤、三线性过滤等优化3D图像质量的技术,游戏中的3D技术逐渐走入成熟阶段。
DirectX 70
DirectX 70最大的特色就是支持T&L,中文名称是“坐标转换和光源”。3D游戏中的任何一个物体都有一个坐标,当此物体运动时,它的坐标发生变化,这指的就是坐标转换;3D游戏中除了场景+物体还需要灯光,没有灯光就没有3D物体的表现,无论是实时3D游戏还是3D影像渲染,加上灯光的3D渲染是最消耗资源的。虽然OpenGL中已有相关技术,但此前从未在民用级硬件中出现。在T&L问世之前,位置转换和灯光都需要CPU来计算,CPU速度越快,游戏表现越流畅。使用了T&L功能后,这两种效果的计算用显示卡的GPU来计算,这样就可以把CPU从繁忙的劳动中解脱出来。换句话说,拥有T&L显示卡,使用DirectX 70,即使没有高速的CPU,同样能流畅的跑3D游戏。
DirectX 80
DirectX 80的推出引发了一场显卡革命,它首次引入了“像素渲染”概念,同时具备像素渲染引擎(Pixel Shader)与顶点渲染引擎(Vertex Shader),反映在特效上就是动态光影效果。同硬件T&L仅仅实现的固定光影转换相比,VS和PS单元的灵活性更大,它使GPU真正成为了可编程的处理器。这意味着程序员可通过它们实现3D场景构建的难度大大降低。通过VS和PS的渲染,可以很容易的宁造出真实的水面动态波纹光影效果。此时DirectX的权威地位终于建成。
DirectX 90
2002年底,微软发布DirectX90。DirectX 9中PS单元的渲染精度已达到浮点精度,传统的硬件T&L单元也被取消。全新的VertexShader(顶点着色引擎)编程将比以前复杂得多,新的VertexShader标准增加了流程控制,更多的常量,每个程序的着色指令增加到了1024条。
PS 20具备完全可编程的架构,能对纹理效果即时演算、动态纹理贴图,还不占用显存,理论上对材质贴图的分辨率的精度提高无限多;另外PS14只能支持28个硬件指令,同时操作6个材质,而PS20却可以支持160个硬件指令,同时操作16个材质数量,新的高精度浮点数据规格可以使用多重纹理贴图,可操作的指令数可以任意长,**级别的显示效果轻而易举的实现。
VS 20通过增加Vertex程序的灵活性,显著的提高了老版本(DirectX8)的VS性能,新的控制指令,可以用通用的程序代替以前专用的单独着色程序,效率提高许多倍;增加循环操作指令,减少工作时间,提高处理效率;扩展着色指令个数,从128个提升到256个。
增加对浮点数据的处理功能,以前只能对整数进行处理,这样提高渲染精度,使最终处理的色彩格式达到**级别。突破了以前限制PC图形图象质量在数学上的精度障碍,它的每条渲染流水线都升级为128位浮点颜色,让游戏程序设计师们更容易更轻松的创造出更漂亮的效果,让程序员编程更容易。
DirectX 90c
与过去的DirectX 90b和Shader Model 20相比较,DirectX 90c最大的改进,便是引入了对Shader Model 30(包括Pixel Shader 30 和Vertex Shader 30两个着色语言规范)的全面支持。举例来说,DirectX 90b的Shader Model 20所支持的Vertex Shader最大指令数仅为256个,Pixel Shader最大指令数更是只有96个。而在最新的Shader Model 30中,Vertex Shader和Pixel Shader的最大指令数都大幅上升至65535个,全新的动态程序流控制、 位移贴图、多渲染目标(MRT)、次表面散射 Subsurface scattering、柔和阴影 Soft shadows、环境和地面阴影 Environmental and ground shadows、全局照明 (Global illumination)等新技术特性,使得GeForce 6、GeForce7系列以及Radeon X1000系列立刻为新一代游戏以及具备无比真实感、幻想般的复杂的数字世界和逼真的角色在影视品质的环境中活动提供强大动力。
因此DirectX 90c和Shader Model 30标准的推出,可以说是DirectX发展历程中的重要转折点。在DirectX 90c中,Shader Model 30除了取消指令数限制和加入位移贴图等新特性之外,更多的特性都是在解决游戏的执行效率和品质上下功夫,Shader Model 30诞生之后,人们对待游戏的态度也开始从过去单纯地追求速度,转变到游戏画质和运行速度两者兼顾。因此Shader Model 30对游戏产业的影响可谓深远。
DirectX 10
在DirectX 10的图形流水线体系中,最大的结构性变化就是在几何处理阶段增加了几何渲染单元(Geometry Shader)。几何渲染单元被附加在顶点渲染单元之后,但它并不像顶点渲染单元那样输出一个个顶点,而是以图元作为处理对象。图元在层次上比顶点高一级,它由一个或多个顶点构成。由单个顶点组成的图元被称为“点”,由两个顶点组成的图元被称为“线”,由三个顶点组成的图元被称为“三角形”。几何渲染单元支持点、线、三角形、带邻接点的线、带邻接点的三角形等多种图元类型,它一次最多可处理六个顶点。借助丰富的图元类型支持,几何渲染单元可以让GPU提供更精细的模型细节。
几何渲染单元赋予GPU自行创造新几何物体、为场景添加内容的神奇能力。灵活的处理能力使GPU更加通用化,以往很多必须倚靠CPU才能完成的工作,现在完全可交由GPU处理。如此一来,CPU就有更多时间处理人工智能、寻址等工作。更令人惊喜的是,几何渲染单元还让物理运算的加入变得更简单,DirectX 10可创建具备物理特性的盒子、模拟刚性物体,物理运算有望在它的带领下逐渐走向普及。可以预见,借助几何渲染单元这一武器,显卡性能将产生质的飞跃,我们也将体验到速度更流畅、画面更精美、情节更细致的游戏
DirectX 101
正如以前的DX版本一样,DX101也是DX10的超集,因此它将支持DirectX 10的所有功能,同时它将支持更多的功能,提供更高的性能。
DX101的一个主要提高是改善的shader资源存取功能,在多样本AA时,在读取样本时有更好的控制能力。除此之外,DX101还将可以创建定制的下行采样滤波器。
DX101还将有更新的浮点混合功能,对于渲染目标更有针对性,对于渲染目标混合将有新的格式,渲染目标可以实现独立的各自混合。阴影功能一直是游戏的重要特效,Direct3D 101 的阴影滤波功能也将有所提高,从而可望进一步提高画质。
在性能方面,DirectX 101将支持多核系统有更高的性能。而在渲染,反射和散射时,Direct3D 101将减少对API的调用次数,从而将获得不错的性能提升。
其他方面,DX101的提高也不少,包括32bit浮点滤波,可以提高渲染精确度,改善HDR渲染的画质。完全的抗锯齿应用程序控制也将是DX101的亮点,应用程序将可以控制多重采样和超级采样的使用,并选择在特定场景出现的采样模板。DX101将至少需要单像素四采样。
DX101还将引入更新的驱动模型,WDDM 21。与DX10的WDDM20相比,21有一些显著的提高。
首先是更多的内容转换功能,WDDM20支持处理一个命令或三角形后进行内容转换,而WDDM21则可以让内容转换即时进行。由于GPU同时要并行处理多个线程,因此内容转换的即时性不仅可以保证转换质量,还可以提升GPU效率,减少等待时间。另外,由于WDDM 21支持基于过程的虚拟内存分配,处理GPU和驱动页面错误的方式也更为成熟。
在 Windows
操作系统的体系构架中,在内核与硬件之间有一层抽象层,专门对硬件进行屏蔽抽象,所以用户不再被允许对硬件进行直接访问。这样做以后,大大地提高了操作系统的抗破坏性和抗干扰性,但这样以来,使硬件操作的效率大打折扣,许多新硬件的新特性无法直接使用,这对多媒体和游戏的发展显然是一种障碍。DirectX
是微软公司提供的一套优秀的应用程序编程接口(APIs),用于联系应用程序和硬件自身,它对发展 Windows
平台下的多媒体应用程序和电脑游戏起到了关键的作用。DirectX
组件包括:DirectDraw、DirectSound、DirectPlay、Direct3D、DirectInput、DirectSetup、AutoPlay
等。
总之,DirectX 的主要好处有两个:为软件开发者提供与硬件的无关性;为硬件开发提供策略。
以上就是关于DirectX怎么启动全部的内容,包括:DirectX怎么启动、DirectX是什么、什么是 DirectX等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!