以CH4分子的形成为例。
基态C原子的外层电子构型为2s22px12py1。在与H原子结合时,2s上的一个电子被激发到2pz轨道上,C原子以激发态2s12px12py12pz1参与化学结合。当然,电子从2s激发到2p上需要能量,但由于可多生成二个共价键,放出更多的能量而得到补偿。
在成键之前,激发态C原子的四个单电子分占的轨道2s、2px、2py、2pz会互相“混杂”,线性组合成四个新的完全等价的杂化轨道。此杂化轨道由一个s轨道和三个p轨道杂化而成,故称为sp3杂化轨道。经杂化后的轨道一头大,一头小,其方向指向正四面体的四个顶角,能量不同于原来的原子轨道。
形成的四个sp3杂化轨道与四个H原子的1s原子轨道重叠,形成(sp3-s)σ键,生成CH4分子。
由于杂化轨道的电子云分布更为集中,杂化轨道的成键能力比未杂化的各原子轨道的成键能力强,故形成CH4分子后体系能量降低,分子的稳定性增强。
杂化轨道(英语:Hybrid orbital)是指原子轨道经杂化后所形成的能量简并的新轨道,用以定量描述原子间的键结性质。
杂化轨道理论是1931年由鲍林(Pauling L)等人在价键理论的基础上提出,它实质上仍属于现代价键理论,但是它在成键能力、分子的空间构型等方面丰富和发展了现代价键理论。1在成键的过程中,由于原子间的相互影响,同一原子中几个能量相近的不同类型的原子轨道(即波函数),可以进行线性组合,重新分配能量和确定空间方向,组成数目相等的新原子轨道,这种轨道重新组合的方式称为杂化(Hybridization),杂化后形成的新轨道称为杂化轨道(Hybrid Orbital)。
2杂化轨道的角度函数在某个方向的值比杂化前的大得多,更有利于原子轨道间最大程度地重叠,因而杂化轨道比原来轨道的成键能力强(轨道是在杂化之后再成键)。
3杂化轨道之间力图在空间取最大夹角分布,使相互间的排斥能最小,故形成的键较稳定。不同类型的杂化轨道之间夹角不同,成键后所形成的分子就具有不同的空间构型。
4只有最外电子层中不同能级中的电子可以进行轨道杂化,且在第一层的两个电子不参与反应。
5不同能级中的电子在进行轨道杂化时,电子会从能量低的层跃迁到能量高的层,并且杂化以后的各电子轨道能量相等又高于原来的能量较低的能级的能量而低于原来能量较高的能级的能量。当然的,有几个 原子轨道参加杂化,杂化后就生成几个杂化轨道。
6 杂化轨道成键时,要满足原子轨道 最大重叠原理。
杂化后的电子轨道与原来相比在角度分布上更加集中,从而使它在与其他原子的原子轨道成键时重叠的程度更大,形成的共价键更加牢固。
1、 某原子在成键时,在键合原子的作用下,同一原子中不同类型能量相近的原子轨道可能改变原有的状态,混杂起来并重新组合成一组有利于成键的新轨道(即杂化轨道)。 这一过程称为原子轨道的杂化,简称杂化。
2 、同一原子中能量相近的n 个原子轨道,组合后只能得到n个杂化轨道。例如,同一 原子的一个n s 轨道和一个npx轨道,只能杂化成两个sp杂化轨道。这两 个s p 杂化轨道的形状一样,但其角度分 布最大值在x轴上的取向相反。
3 、杂化轨道比原来未杂化的轨道成键能力强,形 成的化学键键能大,使生成的分子更稳定。 由于成键原子轨道杂化后,轨道角度分布图的形 状发生了变化,形成的杂化轨道一头大一头小。大的 一头与别的原子成键时电子云可以得到更大程度的重 叠 ,所以形成的化学键比较牢固。
以上就是关于杂化轨道理论的举例说明全部的内容,包括:杂化轨道理论的举例说明、杂化轨道的定义、怎么用最通俗的语言解释「轨道杂化理论」等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!