三角形的外角等于两个不相邻的内角之和。
∵∠A+∠B+∠ACB=180(三角形内角和定理)
且∠ACB+∠ACD=180(邻补角定义)
∴∠A+∠B=∠ACD(等量代换)
外角和定理:
三角形外角定理是平面几何的重要定理之一,指三角形的一个外角等于与它不相邻的两个内角的和。由此可得:三角形的外角大于任何一个与它不相邻的内角。
通常内角+外角=180度,所以每个外角中分别取一个相加,得到的和成为多边形的外角和。n边形的内角与外角的总和为n×180°,n边形的内角和为(n-2)×180°,那么n边形的外角和为360°。这就是说多边形的外角和和边数无关。解答有关多边形内角和外角和的问题时,通常利用公式列方程来解答问题。并且,三角形的一个外角等于不相邻的两个内角之和。
三角形的内角和是180度,外角和是360度。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
部分性质:
1、在平面上三角形的内角和等于180°(内角和定理)。
2、在平面上三角形的外角和等于360° (外角和定理)。
3、在平面上三角形的外角等于与其不相邻的两个内角之和。推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、一个三角形的三个内角中最少有两个锐角。
5、在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6、三角形任意两边之和大于第三边,任意两边之差小于第三边。
7、在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
三角形的外角是三角形的一边与另边的反向延长线组成的角。三角形三个外角之和为360°。
三角形的每个顶点处都有两个相等的外角,所以每个三角形都有六个外角。三角形的一个外角大于与它不相邻的任一内角,且三角形的一个外角等于不相邻的两个内角和。
三角形一个内角的一边与另一边的反向延长线所夹的角。亦即“三角形内角的邻补角”。三角形的每个顶点处都有两个相等的外角,所以每个三角形都有六个外角。
(1)多边形外角的定义:多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。在每一个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和。
(2)多边形外角和定理:多边形的外角和都等于360°。
以上就是关于三角形的外角等于与它不相邻的两个内角的和是多少全部的内容,包括:三角形的外角等于与它不相邻的两个内角的和是多少、三角形的内角与和外角有什么关系、三角形的外角和是多少等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!