标准差也被称为标准偏差,或者实验标准差。简单来说,标准差是一组数据平均值分散程度的一种度量。
一个较大的标准差,代表大部分数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 一般来说标准差较小为好,这样代表比较稳定。
标准差也被称为标准偏差,或者实验标准差,公式如下所示:标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +(xn-x)^2)/n)。
简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。
标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越小,代表回报较为稳定,风险亦较小。
标准差
标准差也被称为标准偏差,或者实验标准差,标准差(Standard Deviation)描述各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度,标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。平均数相同的两个数据集,标准差未必相同。
标准差公式是一种数学公式。标准差也被称为标准偏差,或者实验标准差,公式如下所示:
标准差计算公式:标准差σ=方差开平方。
样本标准差=方差的算术平方根=s=sqrt(((x1-x)^2 +(x2-x)^2 +(xn-x)^2)/(n-1))。
总体标准差=σ=sqrt(((x1-x)^2 +(x2-x)^2 +(xn-x)^2)/n )。
注解:上述两个标准差公式里的x为一组数(n个数据)的算术平均值。当所有数(个数为n)概率性地出现时(对应的n个概率数值和为1),则x为该组数的数学期望。
标准差是什么?
标准差,中文环境中又常称均方差,是离均差平方的算术平均数的平方根,用σ表示。在概率统计中最常使用作为统计分布程度上的测量。标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。平均数相同的两组数据,标准差未必相同;原因是它的大小,不仅取决于标准值的离差程度,还决定于数列平均水平的高低。
以上就是关于标准差是什么意思全部的内容,包括:标准差是什么意思、标准差是什么意思、标准差怎么求等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!