密铺条件:四边形的每个内角在每个拼接点处只应出现一次,且相等的边互相重合。如果在密铺时不太方便,可以采取标号法。
所谓“密铺”,就是指任何一种图形,如果能既无空隙又不重叠的铺在平面上,这种铺法就叫做“密铺”。密铺图形指可以进行密铺的图形。用形状、大小完全相同的平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的密铺,又称做平面图形的镶嵌。
扩展资料
可单独密铺的图形
1、任意三角形、任意凸四边形都可以密铺。
2、正三角形、正四边形、正六边形可以单独用于平移密铺。
3、三对对应边平行的六边形可以单独密铺。
4、目前仅发现十五类五边形能密铺。
正多边形的密铺
正六边形可以密铺,因为它的每个内角都是120°,在每个拼接点处恰好能容纳3个内角;正五边形不可以密铺,因为它的每个内角都是108度,而360°不是108的整数倍,在每个拼接点处的内角不能保证没空隙或重叠现象;除正三角形、正四边形和正六边形外,其它正多边形都不可以密铺平面。
我们都知道,铺地时要把地面铺满,地砖与瓷砖之间就能留有空隙。如果用的地砖是正方形,它的每个角都是直角,那么4个正方形拼在一起,在公共顶点处的4个角,正好拼成一个360度的周角。六边形的每个角都是120度, 3个正六边形拼在一起时,在公共顶点上的3个角度数的和正好也是360度。
除了正方形、长方形以外,正三角形也能把地面密铺。因为正三角形的每个内角都是60度,6个正三角形拼在一起时,在公共顶点处的6个角的度数和正好是360度。
正因为正方形、正六边形拼合以后,在公共顶点上几个角度数的和正好是360度,这就保证了能把地面密铺,而且还比较美观。
因为只有正三角形、正方形、正六边形的内角的整数倍为360°,因此正多边形中仅此三者可以密铺。
圆形不能密铺,但正三角形和等腰梯形、直角梯形能密铺
参考资料来源:百度百科-密铺图形
参考资料来源:百度百科-密铺
平面上有:完全相同的三角形、四边形能密铺(或三角形与四边形组合)、正多边形密铺时,只有正三、四、六边形可以密铺
(利用内角和的知识来计算,如:任意三角形内角180,则三个相同的任意三角形即可形成∠180,六个就可以密铺;同理,四边形内角360,四个就可以密铺;正多边形的顶角的整数倍等于180或360)
曲面像12个正五边形和20个正六边形可以铺成个球(足球就是)
其它不太了解了
所谓“密铺”,就是指任何一种图形,如果能既无空隙又不重叠的铺在平面上,这种铺法就叫做“密铺”。
指各不同图形不重叠不遗漏的拼摆,将一块地面的中间不留空隙也不重叠地铺满,就是密铺
街道两旁的道路常常用一些几何图案的砖铺成,地砖的形状往往是正方形的,也有长方形的,我们还见过正六边形的地砖。无论是正方形、长方形、还是正六边形的地砖,都可以将一块地面的中间不留空隙、也不重叠地铺满,这就是密铺。
我们都知道,铺地时要把地面铺满,地砖与地砖之间就不能留有空隙。如果用的地砖是正方形,它的每个角都是直角,那么4个正方形拼在一起,在公共顶点处的4个角,正好拼成一个36O度的周角。正六边形的每个角都是120度,
3个正六边形拼在一起时,在公共顶点上的3个角度数的和正好也是36O度。除了正方形、长方形以外,正三角形也能把地面密铺。因为正三角形的每个内角都是6O度,6个正三角形拼在一起时,在公共顶点处的6个角的度数和正好是36O度。
正因为正方形、正六边形拼合以后,在公共顶点上几个角度数的和正好是36O度,这就保证了能把地面密铺,而且还比较美观。
1、用正三角形与正方形可以密铺,它每一顶点处有
3
个正三角形与
2
个正方形。
2、用正三角形与正六边形也可以密铺,它每一顶点处有
2
个正三角形与
2
个正六边。
3、用正方形与正八边形也可以密铺,它每一顶点处有
1
个正方形与
2
个正八边形。
地砖的形状往往是正方形的,也有长方形的,我们还见过正六边形的地砖。无论是正方形、长方形、还是正六边形的地砖,都可以将一块地面的中间不留空隙、也不重叠地铺满,也就是密铺。还有什么形状的图形可以密铺地面呢同学们在思考这一问题时总是借助于画出的图形去实验,通过实际观察而得出结论。
涫涤玫刈┢痰卣庖簧钗侍庖灿惺Х矫娴牡览恚梢杂檬е醒У降脑仓芙鞘6O度这一知识从理论上分析、解决。
颐嵌贾溃痰厥币训孛嫫搪刈┯氲刈┲渚筒荒芰粲锌障丁H绻玫牡刈┦钦叫危拿扛鼋嵌际侵苯牵敲个正方形拼在一起,在公共顶点处的4个角,正好拼成一个36O度的周角。正六边形的每个角都是120度,
3个正六边形拼在一起时,在公共顶点上的3个角度数的和正好也是36O度。除了正方形、长方形以外,正三角形也能把地面密铺。因为正三角形的每个内角都是6O度,6个正三角形拼在一起时,在公共顶点处的6个角的度数和正好是36O度。
蛭叫巍⒄咝纹春弦院螅诠捕サ闵霞父鼋嵌仁暮驼檬6O度,这就保证了能把地面密铺,而且还比较美观。
问题一:常见的哪些平面图形能够实现密铺 我们只是讨论有规律的密铺。
关键是看平面图形的角能否不重叠地铺满360度。
1、任意三角形的三个内角之和为180°,任意四边形的四个内角之和等于360°,所以用同种三角形或同种四边形都能实现密铺。
2、正六边形每个内角是120°,因为120°×3=360°,所以等大的正六边形可以密铺。
3、正方形内角90°,等边三角形内角60°,因为90°×2+60°×3=360°,所以混用边长相等的正方形和等边三角形也可以密铺平面。
4、正八边形每个内角是135°,135°×2+90°=360°,所以边长相等的正八边形和正方形搭配起来也可以密铺。
问题二:你知道哪些图形可以密铺吗?请你在可以密铺的图形下面打上勾 根据密铺的图形的特征圆和正五边形不能密铺,其余几个图形都可以密铺.
问题三:哪些图形不能密铺(详细一点) 1、任意三角形、任意凸四边形都可以密铺。
2、正三角形、正四边形、正六边形可以单独用于平移密铺。
3、三对对应边平行的六边形可以单独密铺。
4、目前仅发现十五类五边形能密铺。
问题四:为什么有的图形可以单独密铺?有的不能单独密铺 正三角形、正四边形和正六边形外,其它正多边形都不可以密铺平面。 因为用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的密铺。必须不留空隙,又因为一周是360°所以要达到360°才能完整密铺。
密铺需要满足的条件是一个正多边形的一个内角度数的整数倍是360度。那么这个正多边形就能够密铺。所以单一品种的正多边形只有正三角形、正方形与正六边形。
不是正多边形也能密铺,只要在每一个顶点处能够组成360°的角,所以任意形状的多边形组合一下都有可能密铺。
密铺含义特点
密铺,即平面图形的镶嵌,指用形状、大小完全相同的几种或几十种平面图形进行拼接,使彼此之间不留空隙、不重叠地铺成一片。在国际折纸奥林匹克竞赛中,密铺折纸也称为镶嵌折纸。
正六边形可以密铺,因为它的每个内角都是120度,在每个拼接点处恰好能容纳3个内角;正五边形不可以密铺。
因为它的每个内角都是108度,而360度不是108的整数倍,在每个拼接点处的内角不能保证没空隙或重叠现象;除正三角形、正四边形和正六边形外,其它正多边形都不可以密铺平面。
密铺的规律:任意三角形、凸四边形都可以密铺;正三角形、正四边形、正六边形可以单独用于平移密铺;三对对应边平行的六边形可以单独密铺;仅发现十五类五边形能密铺。
密铺指的是平面图形的镶嵌,用形状、大小完全相同的几种或几十种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的密铺,又称做平面图形的镶嵌。
以上就是关于为什么有的图形可以单独密铺有的不能单独密铺全部的内容,包括:为什么有的图形可以单独密铺有的不能单独密铺、有哪些形状的图形可以密铺、什么叫图形的密铺等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!