重心定理:三角形的三条中线交于一点,这点到顶点的 离是它到对边中点距离的2倍该点叫做三角形的重心
外心定理:三角形的三边的垂直平分线交于一点该点叫做三角形的外心
垂心定理:三角形的三条高交于一点该点叫做三角形的垂心
内心定理:三角形的三内角平分线交于一点该点叫做三角形的内心
旁心定理:三角形一内角平分线和另外两顶点处的外角平分线交于一点该点叫做三角形的旁心三角形有三个旁心。
判定法:
1、锐角三角形:三角形的三个内角中最大角小于90度。
2、直角三角形:三角形的三个内角中最大角等于90度。
3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。
其中锐角三角形和钝角三角形统称为斜三角形。
初中三角形性质定理全部如下:
—三角形三角形要领:大家熟知的三条弧线所围成的图形叫做球面三角形,也叫三边形。这是中考中会涉及到的公理。
三角形性质:三角形内角和等于180度 。等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。
直角三角形的两条直角边的平方和等于斜边的平方--勾股定理。直角三角形斜边的中线等于斜边的一半。
三角形的外角(三角形内角的一边与其另一边的延长线所组成的角)等于与其不相邻的两个内角之和。
一个三角形的3个内角中最少有2个锐角。三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
勾股定理逆定理:如果三角形的三边长a,b,c有下面关系:a^2+b^2=c^2。那么这个三角形就一定是直角三角形。
三角形的外角和是360°。等底同高的三角形面积相等。底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。在△ABC中恒满足tanAtanBtanC=tanA+tanB+tanC。
三角形的一个外角大于任何一个与它不相邻的内角。全等三角形对应边相等,对应角相等。在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。(包括等边三角形)
△ABC,恒有tan(A/2)+tan(B/2)tan(A/2)+tan(C/2)=sec(A/2)^2。三角形的重心是三角形三条中线的交点。
三角形的内心是三角形三条内角平分线的交点。三角形的外心是指三角形三条边的垂直平分线的交点。
三角形的三条高所在直线的交点叫做三角形的垂心。三角形的任意一条中线将这个三角形分为两个面积相等的三角形。三角形具有稳定性。知识回顾:由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形叫做三角形。
直角三角形有勾股定理,等腰三角形多着呢,等边就是3边相等,每个角60度,全等的定理SSS,SAS,ASA,AAS,HL定理(适用直角三角形)
1三角形的内角和为180度
2三角形的两边之和大于第三边,两边之差小于第三边
3等边对等角,等角对等边
4等腰三角形的三线合一(中线 角平分线 高)
5两角和一边对应相等,两三角形全等。(AAS)
6同理:ASA SAS SSS 直角三角形HL
7中线等于斜边一半的三角形是直角三角形
什么是三角形?
由不在同一直线上的三条线段首尾顺次连结所组成的封闭图形叫做三角形。
平面上三条直线或球面上三条弧线所围成的图形。
三条直线所围成的图形叫平面三角形;三条弧线所围成的图形叫球面三角形,也叫三边形。
一个封闭图形的内角和为180度叫做三角形。
证明:
已知:△ABC,证明:∠ABC+∠BAC+∠BCA=180
证明:做BC的延长线至D点,过C点作AB的平行线至E点
∵AB‖CE
∴∠ABC=∠ECD(两直线平行,同位角相等),∠BAC=∠ACE(内错角相等)
∵∠BCD=180
∴∠ACB+∠ACE+∠ECD=∠BCD=180
∴∠ABC+∠BAC+∠BCA=180
证毕。
三角形的内角和
三角形的内角和为180度
证明[编辑本段]三角形分类
(1)按角度分
a锐角三角形:三个角都小于90度 。并不是有一个锐角的三角形,而是三个角都为锐角,比如等边三角形也是锐角三角形。
b直角三角形(简称Rt 三角形):
⑴直角三角形两个锐角互余;
⑵直角三角形斜边上的中线等于斜边的一半;
⑶在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;
⑷在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°(和⑶相反);[编辑本段]解直角三角形
在三角形ABC中,角A,B,C的对边分别为a,b,c 则有
(1)正弦定理
a/SinA=b/SinB= c/SinC=2r (外接圆半径为r)
(2)余弦定理。
a^2=b^2+c^2-2bcCosA
b^2=a^2+c^2-2acCosB
c^2=a^2+b^2-2abCosC[编辑本段]三角形的性质
1三角形的任何两边的和一定大于第三边 ,由此亦可证明得三角形的任意两边的差一定小于第三边。
2三角形内角和等于180度
3等腰三角形的顶角平分线,底边的中线,底边的高重合,即三线合一。
4直角三角形的两条直角边的平方和等于斜边的平方--勾股定理。直角三角形斜边的中线等于斜边的一半。
5三角形共有六心:
三角形的内心、外心、重心、垂心、欧拉线
内心:三条角平分线的交点,也是三角形内切圆的圆心。
性质:到三边距离相等。
外心:三条中垂线的交点,也是三角形外接圆的圆心。
性质:到三个顶点距离相等。
重心:三条中线的交点。
性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍。
垂心:三条高所在直线的交点。
性质:此点分每条高线的两部分乘积
旁心:三角形任意两角的外角平分线和第三个角的内角平分线的交点
性质:到三边的距离相等。
界心:经过三角形一顶点的把三角形周长分成1:1的直线与三角形一边的交点。
性质:三角形共有3个界心,三个界心分别与其对应的三角形顶点相连而成的三条直线交于一点。
欧拉线:三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线就叫三角形的欧拉线。
6三角形的外角(三角形内角的一边与其另一边的延长线所组成的角)等于与其不相邻的内角之和。
7一个三角形最少有2个锐角。
8三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线
9等腰三角形中,等腰三角形顶角的平分线平分底边并垂直于底边。
10勾股定理逆定理:如果三角形的三边长a,b,c有下面关系那么a²+b²=c²
那么这个三角形就一定是直角三角形。[编辑本段]三角形为什么具有稳定性
任取三角形两条边,则两条边的非公共端点被第三条边连接
∵第三条边不可伸缩或弯折
∴两端点距离固定
∴这两条边的夹角固定
∵这两条边是任取的
∴三角形三个角都固定,进而将三角形固定
∴三角形有稳定性
任取n边形(n≥4)两条相邻边,则两条边的非公共端点被不止一条边连接
∴两端点距离不固定
∴这两边夹角不固定
∴n边形(n≥4)每个角都不固定,所以n边形(n≥4)没有稳定性[编辑本段]三角形的边角之间的关系
(1)三角形三内角和等于180°;
(2)三角形的一个外角等于和它不相邻的两个内角之和;
(3)三角形的一个外角大于任何一个和它不相邻的内角;
(4)三角形两边之和大于第三边,两边之差小于第三边;
(5)在同一个三角形内,大边对大角,大角对大边
(6)三角形中的四条特殊的线段:角平分线,中线,高,中位线
(7)三角形的角平分线的交点叫做三角形的内心,它是三角形内切圆的圆心,它到各边的距离相等
(8)三角形的外接圆圆心,即外心,是三角形三边的垂直平分线的交点,它到三个顶点的距离相等
(9)三角形的三条中线的交点叫三角形的重心,它到每个顶点的距离等于它到对边中点的距离的2倍。
(10)三角形的三条高的交点叫做三角形的垂心。
(11)三角形的中位线平行于第三边且等于第三边的1/2。
(12)三角形的一边与另一边延长线的夹角叫做三角形的外角。
注意: ①三角形的内心、重心都在三角形的内部
②钝角三角形垂心、外心在三角形外部。
③直角三角形垂心、外心在三角形的边上。(直角三角形的垂心为直角顶点,外心为斜边中点。)
④锐角三角形垂心、外心在三角形内部。[编辑本段]特殊三角形
1相似三角形
(1)形状相同但大小不同的两个三角形叫做相似三角形
(2)相似三角形性质
相似三角形对应边成比例,对应角相等
相似三角形对应边的比叫做相似比
相似三角形的周长比等于相似比,面积比等于相似比的平方
相似三角形对应线段(角平分线、中线、高)相等
(3)相似三角形的判定
1三边对应成比例则这两个三角形相似
2两边对应成比例及其夹角相等,则两三角形相似
3两角对应相等则两三角形相似
2全等三角形
(1)能够完全重合的两个三角形叫做全等三角形
(2)全等三角形的性质。
全等三角形对应角(边)相等。
全等三角形的对应线段(角平分线、中线、高)相等、周长相等、面积相等。
(3)全等三角形的判定
① SAS ②ASA ③AAS ④SSS ⑤HL (RT三角形)
3等腰三角形
等腰三角形的性质:
(1)两底角相等;
(2)顶角的角平分线、底边上的中线和底边上的高互相重合;
等腰三角形的判定:
(1)等角对等边;
(2)两底角相等;
4等边三角形
等边三角形的性质:
(1)顶角的角平分线、底边上的中线和底边上的高互相重合;
(2)等边三角形的各角都相等,并且都等于60°。
等边三角形的判定:
(1)三个角都相等的三角形是等边三角形;
(2)有一个角等于60°的等腰三角形是等边三角形[编辑本段]三角形的面积公式
(1)S△=1/2ah(a是三角形的底,h是底所对应的高)
(2)S△=1/2acsinB=1/2bcsinA=1/2absinC(三个角为∠A∠B∠C,对边分别为a,b,c,参见三角函数)
(3)S△=√〔s(s-a)(s-b)(s-c)〕 s=1/2(a+b+c)(海伦—秦九韶公式)
(4)S△=abc/(4R)R是外接圆半径
(5)S△=1/2(a+b+c)r r是内切圆半径
(6) | a b 1 |
S△=1/2 | c d 1 |
| e f 1 |
| a b 1 |
| c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC
| e f 1 |
选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小![编辑本段]生活中的三角形物品
雨伞、帽子、彩旗、灯罩、风帆、小亭子、雪山、楼顶、切成三角形的西瓜、火炬冰淇淋、热带鱼的边缘线、蝴蝶翅膀、火箭、竹笋、宝塔、金字塔、三角内裤、机器上用的三角铁、某些路标、长江三角洲、斜拉桥等。
三角形全等的条件 注意:只有三个角相等无法推出两个三角形全等
(1)三边对应相等的两个三角形相等,简写为“SSS”。
(2)两角和它们的夹边对应相等的两个三角形全等,简写成“ASA”。
(3)两角和其中一角的对边对应相等的两个三角形全等,简写成“AAS”。
(4)两边和它们的夹角对应相等的两个三角形全等,简写成“SAS”。
(5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“HL”。
全等三角形的性质
全等三角形的对应角相等,对应边也相等。[编辑本段]三角形中的线段
中线:顶点与对边中点的连线,平分三角形。
高:从三角形的一个顶点(三角形任意两条边的交点)向其对边所作的垂线段(顶点至对边垂足间的线段),叫做三角形的高。
角平分线:顶点到两边距离相等的点所构成的直线。
中位线:任意两边中点的连线。
[1][编辑本段]三角形相关定理
重心定理
三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.
上述交点叫做三角形的重心
外心定理
三角形的三边的垂直平分线交于一点.
这点叫做三角形的外心
垂心定理
三角形的三条高交于一点.
这点叫做三角形的垂心
内心定理
三角形的三内角平分线交于一点.
这点叫做三角形的内心
旁心定理
三角形一内角平分线和另外两顶点处的外角平分线交于一点.
这点叫做三角形的旁心.三角形有三个旁心.
三角形的重心、外心、垂心、内心、旁心称为三角形的五心.
它们都是三角形的重要相关点.
中位线定理
三角形的中位线平行于第三边且等于第三边的一半.
三边关系定理
三角形任意两边之和大于第三边,任意两边之差小于第三边.
勾股定理
在Rt三角形ABC中,A≤90度,则
AB·AB+AC·AC=BC·BC
A〉90度,则
AB·AB+AC·AC>BC·BC
梅涅劳斯定理
梅涅劳斯(Menelaus)定理是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
证明:
过点A作AG‖BC交DF的延长线于G,
则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG。
三式相乘得:AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1
它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。
塞瓦定理
设O是△ABC内任意一点,
AO、BO、CO分别交对边于D、E、F,则 BD/DCCE/EAAF/FB=1
证法简介
(Ⅰ)本题可利用梅涅劳斯定理证明:
∵△ADC被直线BOE所截,
∴ CB/BDDO/OAAE/EC=1 ①
而由△ABD被直线COF所截,∴ BC/CDDO/OAAF/BF=1②
②÷①:即得:BD/DCCE/EAAF/FB=1
(Ⅱ)也可以利用面积关系证明
∵BD/DC=S△ABD/S△ACD=S△BOD/S△COD=(S△ABD-S△BOD)/(S△ACD-S△COD)=S△AOB/S△AOC ③
同理 CE/EA=S△BOC/ S△AOB ④ AF/FB=S△AOC/S△BOC ⑤
③×④×⑤得BD/DCCE/EAAF/FB=1
利用塞瓦定理证明三角形三条高线必交于一点:
设三边AB、BC、AC的垂足分别为D、E、F,
根据塞瓦定理逆定理,因为(AD:DB)(BE:EC)(CF:FA)=[(CDctgA)/[(CDctgB)][(AEctgB)/(AEctgC)][(BFctgC)/
[(AEctgB)]=1,所以三条高CD、AE、BF交于一点。
莫利定理
将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形
有一个角为90度的三角形,就是直角三角形。
直角三角形的性质:
(1)直角三角形两个锐角互余;
(2)直角三角形斜边上的中线等于斜边的一半;
(3)在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半;
(4)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°;
(5)在直角三角形中,两条直角边a、b的平方和等于斜边c的平方,即a2+b2=c2(勾股定理)
(6)(h为斜边上的高),外接圆半径斜边上的中线,内切圆半径
直角三角形的判定:
(1)有一个角为90°;
(2)边上的中线等于这边的一半;
(3)若a2+b2=c2,则以a、b、c为边的三角形是直角三角形(勾股定理的逆定理)
三角形相关定理
重心定理
三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.
上述交点叫做三角形的重心
外心定理
三角形的三边的垂直平分线交于一点.
这点叫做三角形的外心
垂心定理
三角形的三条高交于一点.
这点叫做三角形的垂心
内心定理
三角形的三内角平分线交于一点.
这点叫做三角形的内心
旁心定理
三角形一内角平分线和另外两顶点处的外角平分线交于一点.
这点叫做三角形的旁心.三角形有三个旁心.
三角形的重心、外心、垂心、内心、旁心称为三角形的五心.
它们都是三角形的重要相关点.
中位线定理
三角形的中位线平行于第三边且等于第三边的一半.
三边关系定理
三角形任意两边之和大于第三边,任意两边之差小于第三边.
三角形面积计算公式
s(面积)=a(边长)h(高)/2---三角形面积等于一边与这边上的高的积的一半
[编辑本段]勾股定理
在rt三角形abc中,a≤90度,则
ab·ab+ac·ac=bc·bc
a〉90度,则
ab·ab+ac·ac>bc·bc
解答:
1.三边对应相等的两个三角形全等(简称SSS或“边边边”),这一条是三角形具有稳定性的原因。
2.两边和它们的夹角对应相等的两个三角形全等(简称SAS或“边角边”)。
3.两角和它们的夹边对应相等的两个三角形全等(简称ASA或“角边角”)。
4.两个角和其中一个角的对边对应相等的两个三角形全等(简称AAS或“角角边”)。
5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(简称HL或“斜边,直角边”)。
点评:就5大公理,望采纳谢谢!
是指三角形正余弦定理吗?
在三角形ABC中,角A,B,C所对着的边分别为a,b,c
a/sinA=b/sinB=c/sinC=2R(R为三角形外接圆的半径)
证明:如图,在锐角△ABC中,设AB⊥CD
CD=a·sinB
CD=b·sinA
∴a·sinB=b·sinA
得到
a/sinA=b/sinB
同理,在△ABC中,
b/sinB=c/sinC
也可以在圆中去证明也可以用等面积法
余弦定理:
c^2=a^2+b^2-2abCosC(同理三个,也有表示角的其实都一样)
平面向量证法:
∵如图,有a+b=c (平行四边形定则:两个邻边之间的对角线代表两个邻边大小)
∴c·c=(a+b)·(a+b)
∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)
(以上粗体字符表示向量)
又∵Cos(π-θ)=-CosC
∴c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式)
再拆开,得c^2=a^2+b^2-2abCosC
同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下。
平面几何证法:
在任意△ABC中
做AD⊥BC
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
则有BD=cosBc,AD=sinBc,DC=BC-BD=a-cosBc
根据勾股定理可得:
AC^2=AD^2+DC^2
b^2=(sinBc)^2+(a-cosBc)^2
b^2=sin^2Bc^2+a^2+cos^2Bc^2-2accosB
b^2=(sin^2B+cos^2B)c^2-2accosB+a^2
b^2=c^2+a^2-2accosB
cosB=(c^2+a^2-b^2)/2ac
向左转|向右转
以上就是关于三角形的内心定理是什么全部的内容,包括:三角形的内心定理是什么、初中三角形性质定理全部、三角形有哪些定理等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!