两个矩阵相似不一定都可以对角化,但其中一个可对角化可以推出另一个也可对角化。
两矩阵相似的充要条件是它们有相同的不变因子,或它们有相同的行列式因子,或它们有相同的初等因子,或它们有相同的标准形。
矩阵的相关简介:
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。
将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
n阶矩阵A可相思对角化有两个充要条件:
1、n阶矩阵A相似于对角矩阵的充要条件是A有n个线性无关的特征向量。
2、n阶矩阵A可对角化的充要条件是对应于A的每个特征值的线性无关的特征向量的个数恰好等于该特征值的重数,即设是矩阵A的重特征值。
因此,有两种情况使得n阶矩阵A可对角化,第一种情况:若n阶方阵A的n个特征值互不相等,n阶方阵A有n个线性无关的特征向量,则A可相似对角化,即书上的结论。
反之,若n阶方阵A可对角化的话,可能是有两种情况,若是第一种,则n个特征值全不相等;若是第二种,则n阶方阵A的相等的特征值,即n个特征值不一定全都不相等。
扩展资料:
矩阵相似的性质:
1、两者的秩相等;
2、两者的行列式值相等;
3、两者的迹数相等;
4、两者拥有同样的特征值,尽管相应的特征向量一般不同;
5、两者拥有同样的特征多项式;
6、两者拥有同样的初等因子。
参考资料来源:百度百科-相似矩阵
百度百科-对角化
理论上看,意义是明显的。相似是一种等价关系,对角化相当于对一类矩阵在相似意义下给出了一种简单的等价形式,这对理论分析是方便的。相似的矩阵拥有很多相同的性质,比如特征多项式,特征根,行列式……如果只关心这类性质,那么相似的矩阵可以看作没有区别的,这时研究一个一般的可对角化的矩阵,只要研究它的标准形式——一个对角矩阵就可以了。而对角矩阵是最简单的一类矩阵,研究起来非常方便。这个过程相当于在一个等价类中选取最顺眼的元素研究。
另外,对角化突出了矩阵的特征值,而过度矩阵T反映了特征向量的信息,对角化过程的直观意义还是很明显的。再结合正交矩阵的概念,可以得到一些不平凡的结论,例如实对称矩阵总可以对角化。
实践中的矩阵对角化作用也很大。别的不说,比如要算一个一般的3阶实对称矩阵A的n次幂,n较大时,按矩阵乘法定义去计算是相当繁琐的,计算复杂度呈指数型增长。但是如果把A可以对角化(实对称矩阵总是可以对角化的),写为=T^(-1)PT,P是对角阵。那么A^n=T^(-1)P^nT,P^n的计算是很简单的,只要把各特征值^n即可,此时计算A^n的复杂度几乎与n无关。
以上纯属个人见解,仅供LZ参考:)
(1)对任意V中的两个x=(x1,x2,x3,x4)和y=(y1,y2,y3,y4),有 x+y=(x1+y1,x2+y2,x3+y3,x4+y4),因为
(x1+y1)+(x2+y2)+(x3+y3)+(x4+y4)=(x1+x2+x3+x4)+(y1+y2+y3+y4)=0,所以x+y在V中
对V中任意x=(x1,x2,x3,x4)和任意实数a,ax=(ax1,ax2,ax3,ax4),而ax1+ax2+ax3+ax4=a(x1+x2+x3+x4)=0,所以ax在V中,
所以V是R4的子空间
(2)维数为3(1,0,0,-1),(0,1,0,-1),(0,0,1,-1)是其一组基底
假设矩阵为A,则充要条件为:
1)A有n个线性无关的特征向量
2)A的极小多项式没有重根
充分非必要条件:
1)A没有重特征值
2)AA^H=A^HA
必要非充分条件:
f(A)可对角化,其中f是收敛半径大于A的谱半径的任何解析函数
1、如果这个矩阵可以化为对角矩阵的话那求特征值吧,它的特征值就是对角矩阵的元素,前提是该矩阵是可化为对角矩阵的,如果是对称矩阵,那对称矩阵一定可以化为对角矩阵。
2、相似对角化是指将原矩阵化为对角矩阵,且对角矩阵对角线上的每个元素都是原矩阵的特征值。
以上就是关于相似不一定可以对角化全部的内容,包括:相似不一定可以对角化、关于矩阵相似对角化的概念问题!!、研究矩阵的相似对角化的意义等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!