静压桩小应变怎么做

一切皆有可能2023-05-03  21

小应变检测也称为低应变动力检测,它是相对对大应变动力检测而言的。 低应变检测是从事岩土工程检测、结构检测、工程物探、工程测绘、房屋质量检测、室内环境质量检测、环境化学检测、环境工程、安全评价、水务设计与建设行业、水利水电行业、铁路、公路交通行业、化工、市政等行业岩土工程、地质灾害、环境保护相关的技术服务、咨询、开发工作,以及与上述业务相关的延伸业务。

低应变动力检测常用在桩基完整性检测中,基本原理:通过在桩顶施加激振信号产生应力波,该应力波沿桩身传播过程中,遇到不连续界面(如蜂窝、夹泥、断裂、孔洞等缺陷)和桩底面时,将产生反射波,检测分析反射波的传播时间、幅值和波形特征,就能判断桩的完整性。

优势:如设备简单,方法快速,费用低,是普查桩身质量的一种有力手段,最受建设单位和施工单位的欢迎。

小应变的理论基础是一维应力波理论,基本原理是用小锤冲击桩顶,通过粘结在桩顶的传感器接受来自桩中的应力波信号,采用应力波理论来研究桩土体系的动态响应,反演分析实测速度信号,获得桩的完整性。一维应力波理论有一个重要的假设即平截面假设,即假设力和速度只是深度和时间的函数。理论上,如果杆的长度L远大于杆的直径D,可将其视为一维杆,实际上,如果L/D>7,认为可近似作为一维杆件处理。当桩顶受到锤击点(点振源)锤击时,将产生一个四周传播的应力波,类似半球面波,除了纵波外,还有横波和表面波,在桩顶附近区域内,平截面假设不成立,只有传到一定的深度即X>7D时,应力波沿桩身向下传播的波阵面才可近似看作是平面,即球面波才可近似看作是平面波,一维应力波理论才能成立。

低应变检测在基桩检测中的应用

低应变检测法是建立在一维波动理论基础之上,在数学上模拟桩的一维应力波传播,计算反射、投射和博得叠加,根据波形的异常推断桩的完整性。在桩质量检测过程中,把桩做如下鉴定:

1)视桩为一维弹性直杆;

2)假定桩为均匀材质构成,且截面积在受力时保持平面;

3)忽略了桩的内外阻力表面摩擦力的影响,桩周土对桩的约束和支承作用,集中由桩底的一个弹簧替代。当桩顶受到一定的冲击力作用,会产生一弹性脉冲波,经桩身向下传播,根据力的平衡条件和牛顿第二定律,得到一维波动方程。

低应变检测过程中需注意的事项

1)现场测试准备。

准备工作的好坏直接影响测试结果的准确性 可靠性。在检测前务必注意以下几点:

a.桩头处理严格符合铁路基桩检测技术规程;

b.搜集必要的地质资料;

C.传感器安装点需充分打磨平整。

2)传感器的选用安装。

在对基桩进行低应变反射波法测试时选用高灵敏度加速度传感器检测。检测时,在将浮点工程动测仪、计算机、传感器和电源按要求连接好后,把传感器用粘贴剂粘在检测桩桩顶轴心平面处,传感器应尽可能平行于桩身轴线,位置一般在钢筋笼之内远离力棒的敲击点,传感器与桩头一定要粘贴牢固,因为不同的粘结方式对实测波形影响很大,安装不牢会使波形失真,给波形分析带来困难甚至造成误判,所以传感器与桩头应绝缘、密贴,不得有气泡。根据实测经验认为,在桩头平整的条件下,采用橡皮泥安装传感器可获得理想的桩身完整性实测曲线。

3)激振方式的选择。

在实际检测中,要根据不同条件,采用不同的激振方式,合理调整激振,能量要适中,以取得满意的测试效果,敲击时要垂直于桩顶,避免连击。

检测结果及分析

检测结果的分析也是检测过程中至关重要的一个环节,它对检测人员要求很高。需要有扎实的理论知识和丰富的现场经验。

分析时一些方面需特别注意:

1)当基桩在施工过程中浅部有特别明显的“大头”现象时,其波的传播即不满足该行波理论,或波在界面处能量反射太过强烈,致使透射能量衰弱,或该处形成了“面波”反射,即曲线不能真实的反映基桩的下部情况,需要对大头进行凿挖后重新检测;

2)要特别留意扩径的奇数次反射与入射波反相位,偶数次反射与入射波同相位的特征,以免造成误判——将扩径的偶数次反射当作缺陷判定;

3)要注意低应变检测结果的多解性,注意与施工情况、地层情况等结合进行判定。其深层机理就在于:实际检测过程中,桩身是存在阻尼的,所以我们要考虑的是一个“桩土体系”对激振的响应情况,地层阻抗的变化也会在曲线中反映出来,尤其当地层摩阻较强时即其阻抗与混凝土较匹配的情况下反映尤为突出,嵌岩良好的端承桩的入岩反射信号就是明显的见证;

4)要注意区分因护筒影响所造成的缩颈与真实缩颈的情况;清晰认识扩径后回归正常桩径时的缩颈情况;

5)要特别注意嵌岩桩在人岩处的普遍塌孔现象,切不要误认为是反相桩底,致使桩长造成极大的偏差;

6)充分认识在同一条件下应力波速度与混凝土强度的正相关性,但并不存在函数关系,其复杂程度不言而喻:如混凝土的配合比、骨料种类、骨料粒径、含砂率、外加剂、含水率、施工工艺、养护条件、龄期、钢筋含量等等都起到明显的影响作用。

能。

小应变计算桩长长度的依据是:L=Vt,即长度等于桩底反射波波速速度乘以时间。当然在计算时,由于波速受到一些因素的影响,测定的桩长有一定的误差,一般在1米左右。

如果通过小应变测出的桩长普遍有误差,则很可能桩施工质量有问题。

扩展资料:

原理:

低应变动力检测常用在桩基完整性检测中,基本原理:通过在桩顶施加激振信号产生应力波,该应力波沿桩身传播过程中,遇到不连续界面(如蜂窝、夹泥、断裂、孔洞等缺陷)和桩底面时,将产生反射波,检测分析反射波的传播时间、幅值和波形特征,就能判断桩的完整性。

优势:如设备简单,方法快速,费用低,是普查桩身质量的一种有力手段,最受建设单位和施工单位的欢迎。

小应变的理论基础是一维应力波理论,基本原理是用小锤冲击桩顶,通过粘结在桩顶的传感器接受来自桩中的应力波信号,采用应力波理论来研究桩土体系的动态响应,反演分析实测速度信号,获得桩的完整性。

一维应力波理论有一个重要的假设即平截面假设,即假设力和速度只是深度和时间的函数。理论上,如果杆的长度L远大于杆的直径D,可将其视为一维杆,实际上,如果L/D>7,认为可近似作为一维杆件处理。

参考资料来源:百度百科-小应变检测

1、呵呵,应该是高应变、低应变之分。

2、桩基检测主要有低应变、高应变、声波透射、静载实验。这几部分。

3、低应变主要检测桩身完整性,比如缩颈、断桩、离析等缺陷。

高应变除了可以检测低应变那些项目外,还可以检测桩承载力,但是现在高应变不推荐用,因为它的准确性值得商讨。声波透射也是检测桩的完整性,但这项检测需要在打桩之前预埋声测管,一般多用于桥梁混凝土灌注桩。静载实验检测桩的承载力,一般分为竖向抗压静载实验、竖向抗拔静载实验、水平推静载实验以及复合地基载荷实验。一般用的多的是竖向抗压静载实验和复合地基载荷实验。

灌注桩小应变能测多少米

答:《建筑基桩检测技术规范》JFJ106-2003

低应变法适用范围中

812 本方法的有效检测桩长范围应通过现场试验确定。

可理解为:低应变能测多少米没有具体规定,有效检测桩长范围应通过现场试验确定。从条文说明中说明了这一点。再说白点,具体情况具体分析。‍

条文说明

811 由于受桩周土约束、激振能量、桩身材料阻尼和桩身截面阻抗变化等因素的影响,应力波从桩顶传至桩底再从桩底反射回桩顶的传播为一能量和幅值逐渐衰减过程。若桩过长(或长径比较大)或桩身截面阻抗多变或变幅较大,往往应力波尚未反射回桩顶甚至尚未传到桩底,其能量已完全衰减或提前反射,致使仪器测不到桩底反射信号,而无法对整根桩的完整性做出评定。在我国,若排除其他条件差异而只考虑各地区地质条件差异时,桩的有效检测长度主要受桩土刚度比大小的制约。因各地提出的有效检测范围变化很大,如长径比30~50、桩长30~50m不等,故本条未规定有效检测长度的控制范围。具体工程的有效检测桩长,应通过现场试验,依据能否识别桩底反射信号,确定该方法是否适用。

对于最大有效检测深度小于实际桩长的超长桩检测,尽管测不到桩底反射信号,但若有效检测长度范围内存在缺陷,则实测信号中必有缺陷反射信号。因此,低应变方法仍可用于查明有效检测长度范围是否存在缺陷。

一般都算一米左右,20米以下的桩2m都可以算做误差的(05~2m),小应变主要用于在桩长已知的情况下检测桩的完整性、缺陷位置,如果检测出的桩长与已知桩长长度误差较大可用作参考,如果都在1米左右就没有实际意义了,因为小应变计算桩长长度的依据是:L=Vt,即长度等于桩底反射波波速速度乘以时间,因为波速一般很难确定实际值,所以误差难免,具体有多长就没有了科学依据!

再看看别人怎么说的。

以上就是关于静压桩小应变怎么做全部的内容,包括:静压桩小应变怎么做、小应变能测出桩长吗、一般桩基础检查内容有哪些大应变、小应变又是指什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3781196.html

最新回复(0)