通常把物体在一定温度下电阻突然跌落到零的现象,称为零电阻现象或超导现象,而把电阻突然变为零的温度称为临界温度,用
T
C
表示。利用实验装置,可用逐点测量的方法得到高温超导体的电阻转变曲线,并可用标准的方法判断零电阻现象是否实现。除了零电阻现象之外,超导体还具有另一个基本的特征——迈斯纳效应(完全抗磁性),即不论在有或没有外加磁场的情况下,使样品从正常态转变为超导态,只要
T
<
T
C
,在超导体内部的磁感应强度总是等于零的。
1、顺磁性是指材料对磁场响应很弱的磁性。如用磁化率 k=M/H 来表示(M和H分别为磁化强度和磁场强度),从这个关系来看,磁化率k是正的,即磁化强度的方向与磁场强度的相同。
2、抗磁性是指一种弱磁性。组成物质的原子中,运动的电子在磁场中受电磁感应而表现出的属性。外加磁场使电子轨道动量矩绕磁场进动,产生与磁场方向相反的附加磁矩,故磁化率k抗为很小的负值。
3、反磁性的磁化率为负值,所有物质都具有反磁性。在外磁场作用下,电子的轨道运动产生附加转动(Larmor进动),动量矩发生变化,产生与外磁场相反的感生磁矩,表现出反磁性。但在含有不成对电子的物质中被顺磁磁化率(比反磁性大1~3个数量级)掩盖。
扩展资料:
从原子结构来看,组成顺磁性物体的原子、离子或分子具有未被电子填满的内壳层,这类材料的原子、离子或分子中存在固有磁矩,因其相互作用远小于热运动能,磁矩的取向无规,使材料不能形成自发磁化。
在经典理论中,磁矩在磁场中可取任意方向。所有这些材料中的原子或离子在磁场作用下所产生的磁矩都很小。
抗磁性的本质是电磁感应定律的反映。外加磁场使电子轨道动量矩发生变化,从而产生了一个附加磁矩,磁矩的方向与外磁场方向相反。在磁场作用下,电子围绕原子核的运动是和没有磁场时的运动一样,但同时叠加了一项轨道平面绕磁场方向的进动,即拉莫尔进动。
在外磁场作用下形成的环形电流在金属的边界上反射,因而使金属体内的抗磁性磁矩为表面 “破折轨道”的反向磁矩抵消,不显示抗磁性。
抗磁性是普遍存在的,它是所有物质在外磁场作用下毫不例外地具有的一种属性。外磁场穿过电子轨道时,引起的电磁感应使轨道电子加速。根据焦耳-楞次定律,由轨道电子的这种加速运动所引起的磁通,总是与外磁场变化相反,因而磁化率k总是负的。
参考资料来源:百度百科——抗磁性
参考资料来源:百度百科——反磁性
参考资料来源:百度百科——顺磁性
抗磁性
当磁化强度M为负时,固体表现为抗磁性。Bi、Cu、Ag、Au等金属具有这种性质。在外磁场中,这类磁化了的介质内部的磁感应强度小于真空中的磁感应强度M。抗磁性物质的原子(离子)的磁矩应为零,即不存在永久磁矩。当抗磁性物质放入外磁场中,外磁场使电子轨道改变,感生一个与外磁场方向相反的磁矩,表现为抗磁性。所以抗磁性来源于原子中电子轨道状态的变化。抗磁性物质的抗磁性一般很微弱,磁化率H一般约为-10-5,为负值。
不一样
抗磁性是指一种弱磁性。组成物质的原子中,运动的电子在磁场中受电磁感应而表现出的属性。外加磁场使电子轨道动量矩绕磁场进动,产生与磁场方向相反的附加磁矩,故磁化率k抗为很小的负值。因此,所有物质都具有抗磁性。
所谓的无磁,就是指物质放在磁场中的时候,不会对磁场产生影响。物质在磁场中一般变现为抗磁,顺磁和铁磁性。无磁的物质,不表现磁性。
以上就是关于为什么超导体一定是抗磁性物质全部的内容,包括:为什么超导体一定是抗磁性物质、什么是顺磁性,抗磁性和反磁性、什么是抗磁作用等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!