请问谁有变频器开关电源工作原理图及详细讲解说明,本人是新手,想学维修变频器开关电源。

凹透镜2023-05-03  22

开关电源的检修思路和检修方法

开关电源简化电路图

变频器的开关电源电路完全可以简化为上图电路模型,电路中的关键要素都包含在内了。而任何复杂的开关电源,剔除枝蔓后,也会剩下上图这样的主干。其实在检修中,要具备对复杂电路的“化简”的能力,要在看似杂乱无章的电路伸展中,拈出这几条主要的脉络。要向解牛的庖丁学习,训练自己的眼前不存在什么整体的开关电源电路,只有各部分脉络和脉络的走向——振荡回路、稳压回路、保护回路和负载回路等。

看一下电路中有几路脉络。

1、振荡回路:开关变压器的主绕组N1、Q1的漏--源极、R4为电源工作电流的通路;R1提供了启动电流;自供电绕组N2、D1、C1形成振荡芯片的供电电压。这三个环节的正常运行,是电源能够振荡起来的先决条件。

当然,PC1的4脚外接定时元件R2、C2和PC1芯片本身,也构成了振荡回路的一部分。

2、稳压回路:N3、D3、C4等的+5V电源,R7—R10、PC3、R5、R6等元件构成了稳压控制回路。

当然,PC1芯片和1、2脚外围元件R3、C3,也是稳压回路的一部分。

3、保护回路:PC1芯片本身和3脚外围元件R4构成过流保护回路;N1绕组上并联的D2、R6、C4元件构成了IGBT的保护电路;实质上稳压回路的电压反馈信号——稳压信号,也可看作是一路电压保护信号。但保护电路的内容并不仅是局限于保护电路本身,保护电路的起控往往是由于负载电路的异常所引起。

4、负载回路:N3、N4次级绕组及后续电路,均为负载回路。负载回路的异常,会牵涉到保护回路和稳压回路,使两个回路做出相应的保护和调整动作。

振荡芯片本身参与和构成了前三个回路,芯片损坏,三个回路都会一齐罢工。对三个或四个回路的检修,是在芯片本身正常的前提下进行的。另外,要像下象棋一样,用全局观念和系统思路来进行故障判断,透过现象看本质。如停振故障,也许并非由振荡回路元件损坏所引起,有可能是稳压回路故障或负载回路异常,导致了芯片内部保护电路起控,而停止了PWM脉冲的输出。并不能将和各个回路完全孤立起来进行检修,某一故障元件的出现很可能表现出“牵一发而全身动”的效果。

开关电源电路常表现为以下三种典型故障现象(结合图3、9):

一、次级负载供电电压都为0V。变频器上电后无反应,操作显示面板无指示,测量控制端子的24V和10V电压为0V。检查主电路充电电阻或预充电回路完好,可判断为开关电源故障。检修步骤如下:

1、先用电阻测量法测量开关管Q1有无击穿短路现象,电流取样电阻R4有无开路。电路易损坏元件为开关管,当其损坏后,R4因受冲击而阻值变大或断路。Q1的G极串联电阻、振荡芯片PC1往往受强电冲击而损坏,须同时更换;检查负载回路有无短路现象,排除。

2、更换损坏件,或未检测中有短路元件,可进行上电检查,进一步判断故障是出在振荡回路还是稳压回路。

检查方法:

a、先检查启动电阻R1有无断路。正常后,用18V直流电源直接送入UC3844的7、5脚,为振荡电路单独上电。测量8脚应有5V电压输出;6脚应有1V左右的电压输出。说明振荡回路基本正常,故障在稳压回路;

若测量8脚有5V电压输出,但6脚电压为0V,查8、4脚外接R、C定时元件,6脚外围电路;

若测量8脚、6脚电压都为0V,UC3844振荡芯片坏掉,更换。

b、对UC3844单独上电,短接PC2输入侧,若电路起振,说明故障在PC2输入侧外围电路;电路仍不起振,查PC2输出侧电路。

二、开关电源出现间歇振荡,能听到“打嗝”声或“吱、吱”声,或听不到“打嗝”声,但操作显示面板时亮时熄。这是因负载电路异常,导致电源过载,引发过流保护电路动作的典型故障特征。负载电流的异常上升,引起初级绕组激磁电流的大幅度上升,在电流采样电阻R4形成1V以上的电压信号,使UC3844内部电流检测电路起控,电路停振;R4上过流信号消失,电路又重新起振,如此循环往复,电源出现间歇振荡。

检查方法:

a、测量供电电路C4、C5两端电阻值,如有短路直通现象,可能为整流二极管D3、D4有短路;观察C4、C5外观有无鼓顶、喷液等现象,必要时拆下检测;供电电路无异常,可能为负载电路有短路故障元件;

b、检查供电电路无异常,上电,用排除法,对各路供电进行逐一排除。如拔下风扇供电端子,开关电源工作正常,操作显示面板正常显示,则为24V散热风扇已经损坏;拔下+5V供电接子或切断供电铜箔,开关电源正常工作,则为+5V负载电路有损坏元件。

三、负载电路的供电电压过高或过低。开关电源的振荡回路正常,问题出在稳压回路。

输出电压过高,稳压回路的元件损坏或低效,使反馈电压幅度不足。检查方法:

a、在PC2输出端并接10k电阻,输出电压回落。说明PC2输出侧稳压电路正常,故障在PC2本身及输入侧电路;

b、在R7上并联500Ω电阻,输出电压有显著回落。说明光电耦合器PC2良好,故障为PC3低效或PC3外接电阻元件变值。反之,为PC2不良。

负载供电电压过低,有三个故障可能:1、负载过重,使输出电压下降;2、稳压回路元件不良,导致电压反馈信号过大;3、开关管低效,使电路(开关变压器)换能不足。

检查与修复方法:

a、将供电支路的负载电路逐一解除(注意!不要以开路该路供电整流管的方法来脱开负载电路,尤其是接有稳压反馈信号的+5V供电电路!反馈电压信号的消失,会导致各路输出电压异常升高,而将负载电路大片烧毁!)判断是否由于负载过重引起电压回落;如切断某路供电后,电路回升到正常值,说明开关电源本身正常,检查负载电路;输出电压低,检查稳压回路。

b、检查稳压回路的电阻元件R5—R10,无变值现象;逐一代换PC2、PC3,若正常,说明代换元件低效,导通内阻变大。

c、代换PC2、PC3若无效,故障可能为开关管低效,或开关和激励电路有问题,也不排除UC3844内部输出电路低效。更换优质开关管、UC3844。

对于一般性故障,上述故障排查法是有效的,但不一定百分之百地灵光。若检查振荡回路、稳压回路、负载回路都无异常,电路还是输出电压低,或间歇振荡,或干脆毫无反应,这此情况都有可能出现。先不要犯愁,让我们往深入里分析一下电路故障的原因,以帮助尽快查出故障元件。电路的间歇振荡或停振的原因不在起振回路和稳压回路时,还有哪些原因可导致电路不起振呢?

(1)主绕组N1两端并联的R、D、C电路,为尖峰电压吸收网络,提供开关管截止期间,储存在变压器中磁场能量的泄放通路(开关管的反向电流通道),保护了开关管不被过压击穿。当D2或C4严重漏电或击穿短路时,电源相当于加上了一个很重的负载,使输出电压严重回落,U3844供电不足,内部欠电压保护电路起控,而导致电路进入间歇振荡。因元件并联在N1绕组上,短路后不易测出,往往被忽略;

(2)有的开关电源有输入供电电压的(电压过高)保护电路,一旦电路本身故障,使电路出现误过压保护动作,电路停振;

(3)电流采样电阻不良,如引脚氧化、碳化或阻值变大时,导致压降上升,出现误过流保护,使电路进入间歇振荡状态;

(4)自供电绕组的整流二极管D1低效,正向导通内阻变大,电路不能起振,更换试验;

(5)开关变压器因绕组发霉、受潮等,品质因数降低,用原型号变压器代换试验;

(6)R1起振电路参数变异,但测量不出异常,或开关管低效,此时遍查电路无异常,但就是不起振。

修理方法:

变动一下电路既有参数和状态,让故障暴露出来!试减小R1的电阻值(不宜低于200kΩ以下),电路能起振。此法也可做为应急修理手段之一。无效,更换开关管、UC3844、开关变压器试验。

输出电压总是偏高或偏低一点,达不到正常值。检查不出电路和元件的异常,几乎换掉了电路中所有元件,电路的输出电压值还是在“勉强与凑合”状态,有时好像能“正常工作”了,但让人心里不踏实,好像神经质似的,不知什么时候会来个“反常表现”。不要放弃,调整一下电路参数,使输出电路达到正常值,达到其工作状态,让我们“放心”的地步。电路参数的变异,有以下几种原因:

1、晶体管低效,如三极管放大倍数降低,或导通内阻变大,二极管正向电阻变大,反向电阻变小等;

2、用万用表不能测出的电容的相关介质损耗、频率损耗等;

3、晶体管、芯片器件的老化和参数漂移,如光电耦合器的光传递效率变低等;

4、电感元件,如开关变压器的Q值降低等;

5、电阻元件的阻值变异,但不显著。

6、上述5种原因有数种参于其中,形成“综合作用”。

由各种原因形成的电路的“现在的”这种状态,是一种“病态”,也许我们得换一下检修思路了,中医有一个“辨证施治的”理论,我们也要用一下了,下一个方子,不是针对哪一个元件,而是将整个电路“调理”一下,使之由“病态”趋于“常态”。就这么“模糊着糊涂着”,把病就给治了。

修理方法(元件数值的轻微调整):

1、输出电压偏低:

a、增大R5或减小R6电阻值;b、减小R7、R8电阻值或加大R9电阻值。

2、输出电压偏高:

a、减小R5或增大R6电阻值;b、增大R7、R8电阻值或减小R9电阻值。

上述调整的目的,是在对电路进行彻底检查,换掉低效元件后,进行的。目的是调整稳压反馈电路的相关增益,使振荡芯片输出的脉冲占空比变化,开关变压器的储能变化,使次级绕组的输出电压达到正常值,电路进入一个新的“正常的平衡”状态。

好多看似不可修复的疑难故障,就这样经过一、两只电阻值的调整,波澜无惊地修复了。

检修中须注意的问题:1、在开关电源检查和修复过程中,应切断三相输出电路IGBT模块的供电,以防止驱动供电异常,造成IGBT模块的损坏;2、在修理输出电压过高的故障时,更要切断+5V对CPU主板的供电,以免异常或高电压损坏CPU,造成CPU主板报废。3、不可使稳压回路中断,将导致输出电压异常升高!4、开关电源电路的二极管,用于整流和用于保护的,都为高速二极管或肖基特二极管,不可用普通IN4000系列整流二极管代用。4、开关管损坏后,最好换用原型号的,现在网络这么发达,货物来源不成问题,一般都能购到的。淘宝网上许多东西都能以便宜的价格购到,注意质量!

旷野之雪

2009-3-30

最好买他的书。《变频器实用电路维修和故障解析》《变频器实用电路图集与原理图说》两本书

这个电容和二极管,后面都带了一个BST,全称是Boost-trap,自举电路,这是一个典型的BUCK电路,开关管是NMOS管,因此它的GATE驱动电压必须高于VIN才能够导通,但是在输入端,没有电压能够高于VIN,因此需要一个自举电路产生一个高于VIN的电压,来驱动NMOS管。

具体的原理就是在SW为低时,由DRV脚为CBST充电33V,当需要将NMOS管导通时,将CBST的负端短路到VIN,这样CBST的正端电压,也就是BST脚的电压就会比VIN高33V。DBST的作用是保证在CBST抬高到VIN以上时,不会有反向的电流从CBST再流回DRV脚。

UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:

① 脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;

② 脚是反馈电压输入端,此脚电压与误差放大器同相端的25V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;

③ 脚为电流检测输入端, 当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;

④ 脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=172/(RT×CT);

⑤ 脚为公共地端;

⑥ 脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A ;

⑦ 脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;

⑧ 脚为5V 基准电压输出端,有50mA 的负载能力。

UC3842工作原理:

该电路的电源部分使用单端式脉宽调制型开关电源,脉宽调制IC使用的是UC3842

UC3842

是一种电流型脉宽控制器,它可以直接驱动MOS管、IGBT等,适合于制作单端电路。220V整流滤波后的约300V直流电压经电阻R1降压后加到

UC3842的供电端(7端),为UC3842提供启动电压,UC3842内部设有欠压锁定电路,其开启和关闭阈值分别为16V和10V。在开启之前,UC3842消耗的电流在1mA

以内。启动正常工作后,它的消耗电流约为15mA

。反馈绕组为其提供维持正常工作电压。由于漏感等原因,开关电源在每个开关周期有很大的开关尖峰,即使在占空比很小时,辅助电压也不能降到足够低,所以辅助电源的整流二极管上串一个电阻(R3)

,它和C9形成RC滤波,滤掉开通瞬间的尖峰。接在4脚的R5、C6决定了开关电源的工作频率。计算公式为:Fosc(kHz)=172/(RT(k)×CT(uf)),此电路的工作频率为40KHz。过载和短路保护,通过在开关管的源极串一个电阻

(R12),把电流信号经R10、R11送到3842的第3脚来实现保护。当电源过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压也跟着降低,当低到3842不能工作时,整个电路关闭,然后靠R1开始下

一次启动过程。在这种保护状态下,电源只工作几个开关周期,然后进入很长时间(约500ms)的启动过程,平均功率很低,即使长时间输出短路也不会导致电源的损坏。

稳压过程:

UC3842的2脚是电压检测端。输出电压经R18、R19、W1分压为U4(TL431)参考端(1脚)提供参考电压。TL431是一个有良好的热稳定性能的三端可调分流基准源。内部含有一个25V的基准电压,所以当在参考端引入输出反时,器件可以通过从阴极(3脚)到阳极(2脚)很宽范围的分流,控制输出电压。若输出电压增大,反馈量增大,TL431的分流也就增加。线性光耦(U2)的发光二极管亮度增加,输出电阻减小。UC3842的2脚电压升高,驱动脉宽减小。最终使电压稳定下来。

充电过程:当BATT+、BATT-接上畜电池时,畜电池正端经R13、D10使K1

吸合。充电回路闭合,畜电池开始充电。当畜电池接反时,由于D10反向截止,K1不会吸合,充电回路处于断开状态。不会烧坏R14、D7、D8、C11等元件。刚充电时,畜电池电压很低,充电电流会很大。R14两端的压降大于U3A的2脚R23、R24的分压电压,U3A输出高电平,D13(红色,充电指示灯)亮。当充电电流达到18A时,R14两端的压降等于U5A的3脚R30、R31的分压电压,U5A开始起控。只要输出电流有一点增加,U5A的1脚随即输出低电平,U2的1、2脚电流增加,4、5脚电阻减小,U1的2脚电压升高,输出电压下降,最终使电流恒定在18A。

随着充电时间的增加,畜电池的电压也渐渐上升,当充电电压达到最高充电电压(44V)时。U4的参考端电压将达到25V,U4开始起控,使电压稳定下来。调节W1可以微调电压值。此时电流不再恒定,而是渐渐减小。U5A也不再起控,一直处于高电平输出状态,由于D17的反向截止,不会影响输出电压。当充电电流小于04A时,R14两端的压降小于U3A的2脚R23、R24的分压电压,U3A输出低电平,D13灭。此时U3B的5脚电压高于6脚电压,7脚输出高电平,D14(绿色,电源/浮充指示灯)亮,表示已充满,进入浮充状态。同时经R27限流,D15稳压,通过R28、D9、W2使U4的参考端电压增加,从而使最大充电电压降为浮充电压。调节W2可微调浮充电压

uc3842各脚电压

序号

电压(V)

功能说明

对地电阻(KΩ)

黑笔接地

红笔接地

1

36

保护控制

75

94

2

25

电压反馈/EW输入

75

83

3

47

电流反馈

79

94

4

18

电压反馈

74

122

5

0

0

0

6

61

输出

73

320

7

110

电源

65

600

8

50

电压基准

35

40

UC3842芯片作为小功率开关电源的PWM脉宽调制芯片,在进行开关电源维修过程中,经常会遇到由于故障引起的uc3842/uc3844不能正常工作,现将电源不能起振或轻微起振(测量输出端电压低),但没有正常工作(表现为8Pin无5V)可能的原因作如下总结:

1、首先检查7Pin所连接的电解电容(或者反馈线圈所连接的电解电容),查看其容量是否符合要求,如该电容容量明显减小,更换后应该不起振的故障就能恢复;如该电容正常,进行下一步检查。

2、在电路板上单独给uc3842/uc3844的7Pin加16V电压,测量其8Pin是否有5V,如果测量8Pin有5V电压存在,则说明此芯片没有问题;如没有5V电压,须将uc3842/uc3844拆下来单独加电16V至7Pin,测量8Pin是否有5V,如果仍然没有5V,则可证明芯片已经损坏;如果测量8Pin有5V存在,则应该是与8Pin相连接的外围元器件与地之间有短路存在。

此步骤主要是检测c3842/uc3844芯片本身是否损坏,如果芯片没有损坏,基本可以排除故障出在初级部分,可以进行下一步检查。(附:检测uc3842/uc3844芯片损坏与否的另一种方法为:在检测完芯片外围元器件(或更换完外围损坏的元器件)后,先不装电源开关管,加输入电测uc3842/uc3844的7Pin电压,若电压在10—17V间波动,其余各脚分别也有电压波动,则说明电路已起振,uc3842基本正常,若7脚电压低,其余管脚

无电压或电压不波动,则uc3842/uc3844已损坏。)

3、检查次级侧,推测应该是次级由于输出过载或短路,导致电流增大,进而反映到初级侧使uc3842/uc3844芯片的3Pin实现保护,这就需要对次级侧实现过流保护功能的电子元器件进行逐一测量,直至查出故障。现将uc3842/uc3844芯片正常工作时主要引脚电压列于下面:

1Pin:15V

2Pin:25V

3Pin:0005V

6Pin:105V

7Pin:141V

8Pin:5V

昨天一同行送来一西门子75KW的驱动板电源,主诉为电源有尖叫声,开关管发烫,而次极电压“正常”。电路板几乎已被同行“通扫”。我接手后初步检测整个电路无大问题,通电后果然听到有尖叫声,不到1分钟开关管散热片就已烫手。开关电源有尖叫声一般为两种情况:一是开关频率低,二是次极有短路。再次通电测量UC3844“VCC”“Vref”等电压正常,断电后手摸变压器无任何温升!因变压器无发热现象,排除次极短路情况。而开关频率低的话一般不会引起开关管发热如此之快甚至根本不过热。那么必定是开关管及其外围驱动电路异常引起开关管的损耗增大。换开关管试机,情况依旧。

当测量UC3844驱动脚到开关管G极电路时发现22Ω电阻变值。换一新的贴片电阻试机,开关电源工作正常。回过头来再测量原来的电阻发现阻值已变大为845KΩ。当它变值后和开关管G-S极27KΩ的电阻“分压”导致开关管实际驱动电压幅度下降,驱动波形前后沿变形,而这是场效应管所不能容忍的,故而发现强烈的尖叫声。该电源板从接手到排除故障费时不过十来分钟,细心的你可知我在其中一共使用了“几板斧”

开关电源3842检修流程

使用3842的开关电源外围大同小异,检修方法基本一样,以下流程检修的前

提:

开关管无短路,开关管对地限流保护电阻无开路,在通电时开关管不会马上击穿,切记:先测3842(7)脚的15V供电是否正常:没有电压,就检查启动电阻,或启动电路(部分机型7脚供电使用单独的一个二极管整流),或7

脚对地稳压管短路;有电压但是高,换(7)脚对地滤波电容,100UF/50V;有电压但是电压低且波动,3842的调整电路故障。

7脚电压正常;关机测300V电压消失速度:能很快消失,那电源起振,检查(3)脚对地1K电阻和对地稳压管电压不消失,故障点为3842未起振,检查

3842(1)(2)脚外围电阻、电位器和更换3842自身。3、7脚电压低且波动:重点检查FBT同步反馈电路的二极管;有光耦的机型检查后级光耦输入端,重点检查IC(LM431)周边。

3842的引脚介绍及好坏判断

(1)脚误差信号放大输出

(2)脚反馈输入

(3)脚开关管过流检测

(4)脚震荡电路时间常数

(5)脚地

(6)脚开关管驱动脉冲输出

(7)脚电源

(8)脚5V基准电压好坏的简单判断用47型万用表Rx1挡,UC3842好坏的判断方法

启动电路故障最常见的是启动电阻开路性损坏或者VC3842B的7脚外部的稳压二极管ZD601,滤波电容C626击穿短路,而导致整机不能启动,此时检测UC3842B的7脚是否为10V-17V,即可判断故障位置。另外UC3842B的

7脚外部滤波电容C626,若出现容量减少或者漏电程度增大的现象时,也会引起输出电压高,启动难,不启动等一系列故障。当开关管及UC3842B都是炸裂时,最好在更换损坏的元器件之后,再枪柄开关管G极(栅极)所接的限流电阻R609是否损坏,若这个电阻烧毁或者阻值增大的话,就会引起开关管的激励不足,从而出现更换新的电源开关管后,管子会发烫或者经常烧毁的故障。在有些机型中,电源开关管的G极对地之间还有一个保护的稳压二极管,更换电源开关管时,最好连该稳压二极管一并更换。

通过检测UC3842B的7脚电压,可以得到故障的大致位置,若7脚的电压低于

14V且跳动,则故障主要由下列原因引起:

负载短路:电源开关管G(栅极)对地的稳压二级管(18V)击穿,开关管S极(源极)对地的电流检测电阻阻值变大。

若7脚的电压在16V时跌落,然后又升到16V,如此物质循环,则应着重检查开关变压器(T601)的8脚输出的电压,以及二极管D608到UC3842B的7脚之间的供电电路。

对于开机即烧开关管的机,维修时先不上开关管。通过测量UC3842B的各脚电压来确定它的工作状态是否正常,正常的工作电压大致如下:

脚号       不上开关管的正常电压

1             06-2V

2             2V左右

3             0-05V

4             1V

5             0V

6             05-2V

7             14V左右跳动

8             5V左右

在更换完外围损坏的元器件后,先不装开关管,加电测uc3842的7脚电压,若电压在10-17V间波动,其余各脚也分别有波动的电压,则说明电路已起振,

uc3842基本正常;若7脚电压低,其余管脚无电压或不波动,则uc3842已损坏。在uc3842的7、5脚间外加+17V左右的直流电压,若测8脚有+5V电压,1、2、4、6脚也有不同的电压,则uc3842基本正常,工作电流小,自身不易损坏。它损坏的最常见原因是电源开关管短路后,高电压从G极加到其6脚而致使其烧毁.而有些机型中省去了G极接地的保护二极管,则电源开关管损坏时,uc3842和G极外接的限流电阻必坏.此时直接更换即可。

需要注意的是,电源开关管源极(S极)通常接1个小阻值大功率的电阻,作为过流保护检测电阻.此电阻的阻值一般在02-06之间,大于此值会出现带不起负载的现象(就是次极电压偏低)。由于uc3842(KA3842)的工作电压和输出功率均与UC3843(KA3843)相差甚远,3842系列和3843系列在启动电压和关闭电压方面也存在着较大的区别。前者的启动电压为16V,关闭电压为10V;后者的启动电压为85V,关闭电压为76V。这两个系列的IC不能直接代换。如确有必要用后者代换前者时,要对电路加以改造方可。因此,这一点在维修工作中必须要注意。

UC3842BD1R2GONSOIC-8窄体是安森美半导体(ONSEMICONDUCTOR)原产高性能电流模式控制器,交流-直流(AC-DC)控制器和稳压器/离线控制器,UC3842BD1R2G是高性能固定频率电流模式控制器,专为离线和直流至直流变换器应用而设计,为设计人员提供只需最少外部元件就能获得成本效益高的解决方案,这些集成电路具有可微调的振荡器,能进行精确的占空比控制,

温度补偿的参考,高增益误差放大器,电流取样比较器和大电流图腾柱式输出,是驱动功率MOSFET的理想器件。其它的保护特性包括输入和参考欠压锁定,各有滞后,逐周电流限制,可编程输出静区时间和单个脉冲测量锁存。这些器件可提供8脚塑料表面贴装封装(SOIC8),UC3842BD1R2G有16V(通)和10V(断)低压锁定门限,十分适合于离线变换器,特性:微调的振荡器放电电流,可精确控制占空比,电流模式工作到500千赫,自动前馈补偿,锁存脉宽调制,可逐周限流,内部微调的参考电压,带欠压锁定,大电流图腾柱输出,欠压锁定,带滞后,低启动和工作电流,无铅封装。工作描述:震荡器:振荡器频率由定时元件RT和CT选择值决定,电容CT由50V的参考电压通过电阻R1充电,充至约28V再由一个内部的电流宿放电至12V,在C

T放电期间,振荡器产生一个内部消隐脉冲保持"或非"门的中间输入为高电平,这导致输出为低状态,从而产生了一个数量可控的输出静区时间。图1显示R1与振荡器频率关系曲线,图2显示输出静区时间与频率关系曲线,它们都是在给定的C1值时得到的,注意尽管许多的R1和C1值都可以产生相同的振荡器频率,但只有一种组合可以得到在给定频率下的特定输出静区时间,振荡器门限是温度补偿的,放电电流在25摄氏度时被微调并确保在正负10%之内。这些内部电路的优点使振荡器频率及最大输出占空比的变化最小,结果显示在很多噪声敏感应用中,可能希望将变换器频率锁定至外部系统系统时钟上,这可以通过将时钟信号加到电路来完成。为了可靠的锁定,振荡器自振频率应设为比时钟频率低10%左右。通过修整时钟波形,可以实现准确输出占空

比箝位。误差放大器:提供一个有可访问反向输入和输出的全补偿误差放大器,此放大器具有90DB的典型直流电压增益和具有57度相位余量的10MHZ

的增益为1带宽,同相输入在内部偏置于25V而不经管脚引出,典型情况下变换器输出电压通过一个电阻分压器分压,并由反向输入监视,最大输入偏置电流为20UA,它将引起输出电压误差,后者等于输入偏置电流和等效输入分压器源电阻的乘积,误差放大器输出用于外部回路补偿,输出电压因两个二极管压降而失调并在连接至电流取样比较器的反相输入之前被三分,这将在管脚1处于最低状态时保证在输入不出现驱动脉冲,这发生在电源正在工作并且负载被取消时,或者在软启动过程的开始最小误差放大器反馈电阻受限于放大器的拉电流(05MA和到达比较器的19V箝位电平所需的输出电压)。电流取样比较器和脉宽调制锁存器:UC3842B作为电流模式控制器工作,输出开关导通由振荡器开始,当峰值电感电流到达误差放大器输出/补偿建立的门限电平时中止,这样在逐周基础上误差信号控制峰值电感电流,所用的电流取样比较器-脉宽调制锁存配置确保在任何给定的振荡器周期内,仅有一个单脉冲出现在输出端,电感电流通过插入一个与输出开关Q1的源极串联的以地为参考的取样电阻RS转换成电压,此电压由电流取样输入监视并与来自误差放大器的输出电平相比较,在正常的工作条件下,峰值电感电流由管脚上的电压控制,当电源输出过载或者如果输出电压取样丢失时,异常的工作条件将出现,在这些条件下,电流取样比较器门限将被内部箝位至10V,当设计一个大功率开关稳压器时,为了保持RS的功耗在一个合理的水平上希望降低内部箝位电压,调节此电压的简单方法是使用两个外部二极管来补偿内部二极管,以便在温度范围内有固定箝位电压,如果箝位电压降低过多将导致由于噪声拾取而产生的不误操作,通常在电流波形的前沿可以观察到一个窄尖脉冲,当输出负载较轻时,它可能会引起电源不稳定,这个尖脉冲的产生是由于电源变压器匝间电容和输出整流管恢复时间造成的,在电流取样输入端增加一个RC滤波器,使它的时间常数接近尖脉冲的持续时间,通常会消除不稳定性。

管脚功能说明:

1 补偿:该管脚为误差放大器输入并可用于环路补偿。2 电压反馈:该管脚是误差放大器的反相输入,通常通过一个电阻分压器连至开关电源输出。3 电流取样:一个正比于电感器电流的电压接至此输入,脉宽调制器使用此信息中止输出开关的导通。4、RT/CT:通过将电阻RT连接至VREF以及电容CT连接至地,使振荡器频率和最大输出占空比可调,工作频率可达500KHZ。5 地:该管脚是控制电路和电源的公共地。6 输出:该输出直接驱动功率MOSFET的栅极,高达10A的峰值电流经此管脚拉和灌。7 VCC:该管脚是控制集成电路的正电源。8 VREF:该管脚为参考输出,这通过电阻RT向电容CT提供充电电流。工作结温:+150摄氏度,工作温度:0--+70摄氏度,贮存温度:-65--+150摄氏度。

①脚:误差放大器输出端。在①脚与误差放大器反相输入端②脚之间加入Rc

反馈网络,形成闭环控制幅频响应和相频响应。开关电源也有利用此端进行输出稳压调控。

②脚:误差放大器反相输入端。将开关电源输出电压直接或间接取样后加至此端,与内部误差放大器同相端25V基准电压比较,输出误差信号改变PWM(

脉宽调制)锁存器的工作状态,从而控制调制脉冲宽度,调整输出电压的大小。

③脚:电流检测比较器同相输入端。被检测的开关管峰值电流经取样电阻转换成电压,当输入电压达到1V时,电流检测比较器输出过流控制信号,使

PWM锁存器置位,封锁⑥脚调制脉冲输出,实现过流保护。

④脚:RC振荡端。内接振荡器,外接Rc定时元件,振荡器与RC定时元件产生的振荡频率,作为开关电源在行扫描电路没有启动前电源开关管的工作频率。行扫描电路启动后,行逆程脉冲输入到④脚,使开关管的工作频率被行频锁定。

⑤脚:接地端。

⑥脚:调制脉冲输出端。可直接驱动场效应管,驱动电流平均值为±200mA,最大峰值电流可达到±1A。

⑦脚:电源输入端。启动电压不能低于16v,启动后若供给电压低于10V,自动关闭⑥脚调制脉冲输出,实现欠压保护。电源输入端内部接有36V稳压管

,防止电源启动瞬间输入电压过高损坏芯片。

⑧脚:5V基准电压输出端。

参考资料:

DC/DC降压电源芯片内部设计原理和结构

MP2315(DC/DC电源芯片)解读

DC/DC电源详解

第一次写博客,不喜勿喷,谢谢!!!

DC/DC电源指直流转换为直流的电源,从这个定义上看,LDO(低压差线性稳压器)芯片也应该属于DC/DC电源,但一般只将直流变换到直流,且这种转换是通过开关方式实现的电源称为DC/DC电源。

一、工作原理

要理解DC/DC的工作原理,首先得了解一个定律和开关电源的三种基本拓扑(不要以为开关电源的基本拓扑很难,你继续往下看)

1、电感电压伏秒平衡定律

一个功率变换器,当输入、负载和控制均为固定值时的工作状态,在开关电源中,被称为稳态。稳态下,功率变换器中的电感满足电感电压伏秒平衡定律:对于已工作在稳态的DC/DC功率变换器,有源开关导通时加在滤波电感上的正向伏秒一定等于有源开关截止时加在该电感上的反向伏秒。

是不是觉得有点难理解,接着往下看其公式推导过程。

伏秒平衡方程推算过程:

电感的基本方程为:V(t)=LdI(t)/dt,即电感两端的电压等于电感感值乘以通过电感的电流随时间的变化率。

根据上述方程,可得dI(t)=1/L∫V(t)dt,对于稳态的一个功率变换器,其应保证在一个周期内电感中的能量充放相等,反映在V-t图中即表示在一个周期内其面积之和为0,所以得出电感电压伏秒平衡定律。此处可参考: DC/DC电源详解 第8页(如果此处还无法理解,可先阅读下面开关电源三种基本拓扑的工作原理)。

扩展资料:

1、当一个电感突然加上一个电压时,其中的电流逐渐增加,并且电感量越大,其电流增加越慢;

2、当一个电感上的电流突然中断,会在电感两端产生一个瞬间高压,并且电感量越大该电压越高;

3、电容的基本方程为:I(t)=dV(t)/(Cdt),当一电流流经电容时,电容两端电压逐渐增加,并且电容量越大电压增加越慢;

2、开关电源三种基本拓扑

21、BUCK降压型

图1 BUCK型基本拓扑简化工作原理图

图2 电感V-t特性图

BUCK降压型基本拓扑原理如图1所示,其电感L1的V-t特性图如图2。

当PWM驱动MOS管Q1导通时,忽略MOS管的导通压降,此时电感两端电压保持不变为V in -V o ,根据电感的基本方程:V(t)=L dI(t)/dt,电感电流将呈线性上升,此时电感正向伏秒为:V T on =(V in -V o )T on。

当PWM驱动MOS管Q1截至时,电感电流经过续流二极管D1形成回路(忽略二极管压降)且电感电流不发生突变,同样电感两端电压也保持不变为V o ,方向与(V in -V o )相反,电感电流呈线性下降,此时电感反向伏秒为:V T off =Vo (T s -T on ),T s 为PWM波形周期。

根据电感电压伏秒平衡定律可得:(V in -V o ) T on =V o (T s -T on )

即 V o =D V in (D为占空比)

22、BOOST升压型

图3 BOOST型基本拓扑简化工作原理图

图3是BOOST升压型基本拓扑的简化原理图,其分析方法和BUCK电路分析类似。

当PWM驱动MOS管导通时,此时电感的正向伏秒为:V in T on;

当PWM驱动MOS管截至时,此时电感的反向伏秒为:(V o - V in )(T s -T on )。

根据电感电压伏秒平衡定律可得:V in T on =(V o - V in ) (T s -T on )

V o =V in /(1-D)

23、BUCK-BOOST极性反转升降压型(该电路中二极管方向反了)

图4 BUCK-BOOST型基本拓扑简化工作原理图

BUCK-BOOST电路分析方法和上面两种类型的基本拓扑分析方法相同,当MOS管导通时,电感的正向伏秒为:V in T on ;当MOS管截止时,电感的反向伏秒为:-V o (T s -T on )。

根据电感电压伏秒平衡定律可得:V in T on =-V o (T s -T on )

即 V o =-V in (D/(1-D))

扩展资料

1、DC/DC电源芯片主要是通过反馈电压与内部基准电压的的比较,从而调节MOS管的驱动波形的占空比,来保证输出电压的稳定。

2、同步整流技术

由于二极管导通时多少会存在管压降,因此续流二极管所消耗的功率将会成为DC/DC电源主要功耗,从而严重限制了DC/DC电源芯片效率的提高。为解决该问题,以导通电阻极小的MOS管取代续流二极管,然后通过控制器同时控制开关管和同步整流管,要保证两个MOS管不能同时导通,负责将会发生短路。

图5 带同步整流的BUCK电路

二、DC/DC电源调制方式

DC/DC电源属于斩波类型,即按照一定的调制方式,不断地导通和关断高速开关,通过控制开关通断的占空比,可以实现直流电源电平的转换。DC/DC电源的调制方式有三种:PWM方式、PFM方式、PWM与PFM的混合方式。

1PWM(脉冲宽度调制)

PWM采用恒定的开关频率,通过调节脉冲宽度(占空比)的方法来实现稳定电源电压的输出。在PWM调制方式下,开关频率恒定,即不存在长时间被关断的情况。

优点:噪声低、效率高,对负载的变化响应速度快,且支持连续供电的工作模式。

缺点:轻负载时效率较低,且电路工作不稳定,在设计上需要提供假负载。

2PFM(脉冲频率调制)

PFM通过调节开关频率以实现稳定的电源电压的输出。PFM工作时,在输出电压超过上阈值电压后,其输出将关断,直到输出电压跌落到低于下阈值电压时,才重新开始工作。

优点:功耗较低,轻负载时,效率高且无需提供假负载。

缺点:对负载变化响应较慢,输出电压的噪声和纹波相对较大,不适合工作于连续供电方式。

三、DC/DC芯片的内部构造

接下来我们来看看DC/DC电源芯片内部的单元模块,并且给大家看看基本拓扑与电源芯片的联系,先来看一个图。

图6 DC/DC电源芯片内部构图

1、误差放大器:误差放大器的作用就是将反馈电压(FB引脚电压)与基准电压的差值进行放大,然后再用该信号去控制PWM输出信号的占空比。

2、温度保护:当温度高于限定值,芯片停止工作。

3、限流保护:如果电流比较器的电阻上的电流过大,输出就会降低,直到超过下限阈值,电源芯片就会出现打嗝现象。这个模式可以在输出发生短路的情况下很好地保护芯片,保护稳压管,一旦过流现象消除,打嗝也会消除。

4、软启动电路:用于电源启动时,减小浪涌电流,使输出电压缓慢上升,减小对输入电源的影响。

四、DC/DC电路的硬件设计参数选择标准

1设置输出电压:先选择合适的R2,R2过小会导致静态电流过大,从而导致加大损耗;R2太大会导致静态电流过小,而导致FB引脚的反馈电压对噪声敏感,一般在datasheet中有推荐值范围参考。选定R2,根据输出电压计算R1的值,R1=((V out -V ref )/V ref )R2。

2电感:电感的选择要满足直到输出最小规定电流时,电感电流也保持连续。在电感选取过程中需要综合考虑输出电流、纹波、体积等多个因素。较大的电感将导致较小的纹波电流,从而导致较低的纹波电压,但是电感越大,将具有更大的物理占用面积,更高的串联电阻和更低的饱和电流。一般在芯片的datasheet中会有相应的计算公式。

3输出电容:输出电容的选择主要是根据设计中所需要的输出纹波的要求来进行选取。

电容产生的纹波:相对很小,可以忽略不计;

电容等效电感产生的纹波:在300KHz~500KHz以下,可以忽略不计;

电容等效电阻产生的纹波:与ESR和流过电容电流成正比,该电流纹波主要是和开关管的开关频率有关,基本为开关频率的N次谐波,为了减少纹波,让ESR尽量小。

出处: >

以上就是关于请问谁有变频器开关电源工作原理图及详细讲解说明,本人是新手,想学维修变频器开关电源。全部的内容,包括:请问谁有变频器开关电源工作原理图及详细讲解说明,本人是新手,想学维修变频器开关电源。、图中是一个开关电源IC的电路。哪位大侠能帮我详细讲解一下圈红圈的电容跟二极管的作用、我要找交流220伏输入输出直流24伏2A开关电源电路图和讲解分折故障文章等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3779488.html

最新回复(0)