二项式的展开式是什么

二项式的展开式是什么,第1张

二项式展开公式:(a+b)^n=a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2++C(n,n-1)ab^(n-1)+b^n,二项式定理也叫做牛顿二项式定理,是牛顿在十七世纪六十年代提出的,该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。

用数学归纳法证明二项式定理:

证明:当n=1时,左边=(a+b)1=a+b

右边=C01a+C11b=a+b;左边=右边

假设当n=k时,等式成立,即(a+b)n=C0nan+C1n a(n-1)b+…+Crn a(n-r)br+…+Cnn bn成立;

则当n=k+1时, (a+b)(n+1)=(a+b)n(a+b)=[C0nan+C1n a(n-1)b+…+Crn a(n-r)br+…+Cnn bn](a+b)

=[C0nan+C1n a(n-1)b+…+Crn a(n-r)br+…+Cnn bn]a+[C0nan+C1n a(n-1)b+…+Crn a(n-r)br+…+Cnn bn]b

=[C0na(n+1)+C1n anb+…+Crn a(n-r+1)br+…+Cnn abn]+[C0nanb+C1n a(n-1)b2+…+Crn a(n-r)b(r+1)+…+Cnn b(n+1)]

=C0na(n+1)+(C0n+C1n)anb+…+(C(r-1)n+Crn) a(n-r+1)br+…+(C(n-1)n+Cnn)abn+Cnn b(n+1)]

=C0(n+1)a(n+1)+C1(n+1)anb+C2(n+1)a(n-1)b2+…+Cr(n+1) a(n-r+1)br+…+C(n+1)(n+1) b(n+1)

∴当n=k+1时,等式也成立;

二项展开式的性质:

1、项数: n+1项;

2、第k+1项的二项式系数是Cₙᵏ;

3、在二项展开式中,与首末两端等距离的两项的二项式系数相等;

4、如果二项式的幂指数是偶数,中间的一项的二项式系数最大。如果二项式的幂指数

是奇数,中间两项的的二项式系数最大,并且相等。

所以对于任意正整数,等式都成立。

16世纪,许多数学家的书中都载有二项式系数表。1654年,法国的帕斯卡最早建立了一般正整数次幂的二项式定理,因此算术三角形在西方至今仍以他的名字命名。1665年,英国的牛顿将二项式定理推广到有理指数的情形。

18世纪,瑞士的欧拉和意大利的卡斯蒂隆分别采用待定系数法和“先异后同”的方法证明了实指数情形的二项式定理。

艾萨克·牛顿简介:

艾萨克·牛顿(1643年1月4日—1727年3月31日),爵士,英国皇家学会会长,英国著名的物理学家、数学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。

牛顿的一项被广泛认可的成就是广义二项式定理,它适用于任何幂。他发现了牛顿恒等式、牛顿法,分类了立方面曲线(两变量的三次多项式),为有限差理论作出了重大贡献,并首次使用了分式指数和坐标几何学得到丢番图方程的解。他用对数趋近了调和级数的部分和(这是欧拉求和公式的一个先驱),并首次有把握地使用幂级数和反转(revert)幂级数。他还发现了π的一个新公式。

二项式定理(英语:binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。

该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。

它不是一个等差数列,也不是一个等比数列,但通过二项式定理的展开式,可以转化为按等差数列,由低次幂到高次幂递进求和,最终可推导至李善兰自然数幂求和公式的原形。

发现历程

在中国被称为「贾宪三角」或「杨辉三角」,一般认为是北宋数学家贾宪所首创。它记载于杨辉的《详解九章算法》(1261)之中。在阿拉伯数学家卡西的著作《算术之钥》(1427)中也给出了一个二项式定理系数表,他所用的计算方法与贾宪的完全相同。

在欧洲,德国数学家阿皮安努斯在他1527年出版的算术书的封面上刻有此图。但一般却称之为「帕斯卡三角形」,因为帕斯卡在1654年也发现了这个结果。无论如何,二项式定理的发现,在中国比在欧洲要早500年左右。

二项式各项系数之和是2的n次方。二项式的各项系数之和,可以采用赋值法,二项式系数,或组合数,是定义为形如1加x乘6乘7展开后x的系数,其中n为自然数,k为整数,从定义可看出二项式系数的值为整数。

项式系数符合等式可以由其公式证出,也可以从其在组合数学的意义推导出来,第一式左项表示从n加1件选取k件的方法数,这些方法可分为没有选取第n加1件,即是从其余n件选取k件,和有选取第n加1件,即是从其余n件选取11件,而第二式则是每个从n件选取k件的方法,也可看为选取其余n加1k件的方法。二项式的定义

二项式定理,又称牛顿二项式定理,由艾萨克牛顿于1664年、1665年间提出,该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式,二项式定理可以推广到任意实数次幂,即广义二项式定理。

对于任意一个n次多项式,我们总可以只借助最高次项和n减1次项,根据二项式定理,凑出完全n次方项,其结果除了完全n次方项,后面既可以有常数项,也可以有一次项,二次项,三次项等,直到n减2次项,特别地,对于三次多项式,配立方,其结果除了完全立方项,后面既可以有常数项,也可以有一次项。

1、二项式定理(英语:binomialtheorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。

2、二项式定理最初用于开高次方。在中国,成书于1世纪的《九章算术》提出了世界上最早的多位正整数开平方、开立方的一般程序。11世纪中叶,贾宪在其《释锁算书》中给出了“开方作法本原图”,满足了三次以上开方的需要。

二项式定理

二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年期间提出。

该定理给出两个数之和的整数次幂的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。

简介

编辑

二项式定理可以用以下公式表示:

其中,又有等记法,称为二项式系数,即取的组合数目。此系数亦可表示为杨辉三角形。[1]

2证明

编辑

当,

考虑用数学归纳法,假设二项展开式在时成立。

设,则:

,将a、b<乘入:

,取出的项:

,设:

, 取出项:

,两者相加:

,套用帕斯卡法则:

3应用

编辑

牛顿以二项式定理作为基石发明出了微积分。其在初等数学中应用主要在于一些粗略的分析和估计以及证明恒等式等。

证明组合恒等式

二项式定理给出的系数可以视为组合数的另一种定义。 因此二项式展开与组合数的关系十分密切。 它常常用来证明一些组合恒等式。

比如证明,可以考虑恒等式。

展开等式左边得到:。 注意这一步使用了有限求和与乘积可以交换的性质。

同时如果展开等式右边可以得到。

比较两边幂次为的项的系数可以得到:。

令,并注意到即可得到所要证明的结论。

4推广

编辑

该定理可以推广到对任意实数次幂的展开, 即所谓的牛顿广义二项式定理:

其中。

5牛顿二项式扩充定理

编辑

设函数:

根据二项式定理得F(x)的任意一项为:

同理上式()中的任意一项为

如此类推我们预知最后一项存在;

那么我们得到其中

的任意一个系数为以上各式系数之积即为;

设M=0+j++q+p+m而且项的系数为AM

以上就是关于二项式的展开式是什么全部的内容,包括:二项式的展开式是什么、二项式定理、二项式的各项系数之和是什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:聚客百科

原文地址: https://juke.outofmemory.cn/life/3779244.html

()
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-03
下一篇 2023-05-03

发表评论

登录后才能评论

评论列表(0条)

保存