断层的形成
断层是构造运动中广泛发育的构造形态。它大小不一、规模不等,小的不足一米,大到数百、上千千米。但都破坏了岩层的连续性和完整性。在断层带上往往岩石破碎,易被风化侵蚀。沿断层线常常发育为沟谷,有时出现泉或湖泊。 是什么力量导致岩层断裂错位呢?原来是地壳运动中产生强大的压力和张力,超过岩层本身的强度对岩石产生破坏作用而形成的。岩层断裂错开的面称断层面。两条断层中间的岩块相对上升,两边岩块相对下降时,相对上升的岩块叫地垒;常常形成块状山地,如我国的庐山、泰山等。而两条断层中间的岩块相对下降、两侧岩块相对上升时,形成地堑,即狭长的凹陷地带。我国的汾河平原和渭河谷地都是地堑。 断层对地球科学家来说特别重要,因为地壳断块沿断层的突然运动是地震发生的主要原因。科学家们相信:他们对断层机制研究越深入,就能越准确地预报地震,甚至控制地震。
组成要素
特大断层——东非大裂谷
破裂面两侧岩块发生显著相对位移的断裂构造。规模大小不等 ,大者沿走向延伸数百千米 ,常由许多断层组成,可称为断裂带;小者可见于手标本。几何要素 断层由断层面和断盘构成。断层面是岩块沿之发生相对位移的破裂面。断盘指断层面两侧的岩块,位于断层面之上的称为上盘,断层面之下的称为下盘,如断层面直立,则按岩块相对于断层走向的方位来描述。断层两侧错开的距离统称位移。按测量位移的参考物的不同,有真位移和视位移之分,真位移是断层两侧相当点错开的距离,即断层面上错断前的一点,错断后分成的两个对应点之间的距离,称为总滑距;视位移是断层两侧相当层错开的距离,即错动前的某一岩层,错断后分成两对应层之间的距离,统称断距。 通常按断层的位移性质分为:①上盘相对下降的正断层。②上盘相对上升的逆断层。断层面倾角小于30°的逆断层又称冲断层。正断层和逆断层的两盘相对运动方向均大致平行于断层面倾斜方向,故又统称为倾向滑动断层。③两盘沿断层走向作相对水平运动的平移断层,又称走向滑动断层(简称走滑断层)。
分类
根据断层线上原来相邻接的两点在断层运动中的相对运动状况可以将断层分类。 断层
如果它们的运动只在水平方向上,并且平行于断层面,那么这断层叫走向滑动断层。走向滑动断层又进一步分为右滑和左滑断层。 如果一个观察者站在断层的一侧,面向断层,另一边的岩块向他左方滑动,那它就叫左滑断层。之所以如此称呼,因为要追索被移动了的地表特征时,该人需沿断层线转向左边,才能在那一边找到与这边相对应的特征。这种走向滑动断层也叫右旋或左旋、右行或左行断层,或统称走向断层。加利福尼亚圣安德列斯断层是一条右旋断层或滑动断层。 沿断层面作上升下降的相对运动,则是倾向滑动断层。上盘相对下盘向下运动的倾向滑动断层是正断层。 当断层面倾角小于或等于45°,上盘相对下盘作向上运动时,叫冲断层,而若断层面倾角大于45°,则称逆断层。 两盘相对运动方向界于走向滑动断层和倾向滑动断层之间的,叫斜向滑动断层。 断层两盘之间的相对位移常被叫作断层落差和平错。落差反映垂直位移,而平错反映水平位移。以上所说的断层都有一个共同的运动特点,即在运动中两盘的构造保持着平行。 但也可以有这样的断层,相邻两盘块体之间发生了扭动、转动,这样的断层被称为旋转断层或剪状断层 上面这张照片里山岳右边的线形结构,就是美国加州著名的圣安地列斯断层,它也是地球表面最长和最活跃的断层之一。 圣安地列斯断层的深度有15公里,存在的时间已经超过2000万年。照片是从奋进号航天飞机拍摄的雷达影像和测地卫星的真色影像所组合出来的。巨大的太平洋板块沿着圣安地列斯断层,相对于北美板块向北漂移,平均每年移动数厘米,按这种移动速率,经过数百万年后,地球表面的陆块分布和现在比起来,将会有很大的不同。
知识分类
自然科学篇>地球科学(地理学家、地质学家) 地壳中岩石的断裂。地壳的挤压力或张力使断裂两侧的岩块发生相对位移。断层的长度可由几公分到数百公里,沿断裂面(断层面)的位移也可由不到1公分到数百公里。位移往往分布在由无数单个断层组成的断层带内,断层带可宽数百分尺。断层分布不均匀,在某些大区域内一个断层也没有;而一些地区则被各样大小的无数断层所切割。断层有直立的、水平的,或向任何角度倾斜的。断层面上部的岩块称为上盘;下部的称为下盘。 断层面能被磨得很光滑,留下摩擦的条痕称为断层擦痕;断层面两则岩石可能被压碎成细粒黏土状,称为断层泥;如压碎的岩粒较粗,则称为断层角砾。有时断层邻近的岩层,由于抵抗滑动也会发生褶皱或弯曲。有厚土层的地区断层面通常被覆盖。断层面两侧断块的位移一般根据沉积层或其他标志如矿脉和岩墙来测定(相对于某一平面如海平面的绝对位移一般是测不出的)。 沿断层的运动可以是旋转运动,两侧断块彼此相对旋转。断层的视运动可以是与实际运动完全不同的,侵蚀作用把实际运动形迹都消除了。运动可以是持续蠕动,或在数秒内发生几公尺数量级的跃动。大部分地震是沿断层的快速运动引起的。断层可根据其倾角和相对运动以及视运动来分类。正断层或重力断层是由于地壳受竖直挤压拉张而形成的。上盘向下滑动,倾角一般大于45°。这种断层在世界上到处可见到。在美国犹他州和内华达州,断层形成山脉一侧或两侧的边界。断裂时因上盘向下滑动数千公尺变为谷底而相对形成了这些山脉。 逆断层是由于地壳收缩,受水平挤压力造成的。由于向上最易减压,上盘往上移动覆盖在下盘之上,其倾角一般小于45°;大于45°的类似断层,称为冲断层。如逆断层的倾角很小,而位移总量却很大时,称为逆掩断层。大型逆断层是维吉尼亚州和田纳西州岭谷地区中阿帕拉契区域的特色。走向滑断层(或称平移断层)大体上也因水平挤压形成。其差别只在于,最易减压的是几乎平行于挤压力的水平方向。断层面基本上是直立的,沿侧向运动。这种断层分布广泛,往往导致大洋中脊发生断错。圣安德烈亚斯断层是这种类型断层著名的陆上例子,1906年旧金山大地震时其最大位移有6公尺(20呎)。在最近几百万年期间,沿这条大断层的总错距足有数十公里。
认识标志
野外认识断层及其性质的主要标志是:① 地层、岩脉、矿脉等地质体在平面或剖面上突然中断或错开。②地层的重复或缺失,这是断层走向与地层走向大致平行的正断层或逆断层常见的一种现象,在断层倾向与地层倾向相反,或二者倾向相同但断层倾角小于地层倾角的情况下,地层重复表明为正断层,地层缺失则为逆断层。③擦痕,断层面上两盘岩石相互摩擦留下的痕迹,可用来鉴别两盘运动方向进而确定断层性质。④牵引构造。断层运动时断层近旁岩层受到拖曳造成的局部弧形弯曲,其凸出的方向大体指示了所在盘的相对运动方向。⑤由断层两盘岩石碎块构成的断层角砾岩、断层运动碾磨成粉末状断层泥等的出现表明该处存在断层。此外还可根据地貌特征(如错断山脊、断层陡崖、水系突然改向)来识别断层的存在。
危害
根据断层面(即岩石的裂缝和两块岩石运动过程中产生的裂缝)位置的不同特征,科学家将断层分为四种类型: 正断层
在正断层中(查看下面的动画),断层面几乎是垂直的。上盘(位于平面上方的岩石块)推动下盘(位于平面下方的岩石块),使之向下移动。反过来,下盘推动上盘使之向上移动。由于分离板块边界的拉力,地壳被分成两半,从而产生断层。 正断层:逆断层的断层面也几乎垂直,但上盘向上移动,而下盘向下移动。这种类型的断层是由于板块挤压形成的。 冲断层与逆断层的移动方式相同,但断层带几乎是水平的。在这类同样是由挤压形成的断层中,上盘的岩石实际被向上推移至下盘的顶部。这是在聚合板块边界中产生的断层类型。 逆断层:在平移断层中,岩石块沿相反的水平方向移动。正如转换板块边界中所述,地壳块相互滑动时形成这些断层。 平移断层:在所有类型的断层中,不同的岩石块紧密地相互挤压,在移动过程中形成很大摩擦力。如果这种摩擦足够大,这两块岩石将咬合,因为摩擦力使它们无法相互滑动。在这种情况下,来自板块的力量继续推动岩石,从而增大施加在断层上的压力。 如果这种压力大到可以克服摩擦力,岩石块将突然向前运动。换句话说,当构造作用力推动“咬合”岩石块移动时,积聚了潜在的能量。在这些板块最终移动时,这些积聚起来的能量变成了动能。一些断层的变动在地球表面形成了明显变化,但也有一些岩石的变动发生在地表以下的岩石中,因此无法形成地表断裂。 产生断层的最初震动,以及沿已经形成的断层产生的突如其来的剧烈变动称为主要震源。多数地震发生在板块边界,因为这是板块运动张力最强的部分。地震会形成断层带,即相互交织的断层组。在断层带,由一个断层释放的动能可以增大周边断层的压力(潜在能量),导致发生其他地震。这就是短时间内一个区域可能发生多次地震的原因之一。 地震也常常发生在板块中央。事实上,美国有记载的一系列强力地震就发生在北美大陆板块的中央。1811年和1812年这些地震袭击了几个州,其震源位于密苏里州。在二十世纪七十年代,科学家发现了该地震的可能来源:一条深藏于多层岩石层下面的断层带,它已经存在了6亿年之久。
1正断层一般特点
正断层是断层上盘沿断层面相对向下滑动的断层。正断层产状一般较陡,大多在45°以上,而以60°~70°者最为常见。大型正断层的陡直断层面向地下深处常常变缓。正断层带内岩石破碎相对不太强烈,角砾岩多带棱角,超碎裂岩不太发育,通常没有强烈挤压形成的复杂小褶皱等现象。
2伸展构造
伸展构造是在岩石圈水平拉张作用下形成的以正断层为主体的组合构造系列。伸展构造与挤压构造是全球构造中最为醒目的两种构造类型。从全球构造及其演化的角度考虑,伸展构造与挤压构造是构造作用在时间和空间上紧密相关的两个方面,如果把地球作为一个统一的大系统进行观察,对一个地史阶段而言(时间一定),某一地区处于挤压造山,形成盆山构造,那么在毗邻的另一地区一定存在拉张成盆,形成盆岭构造;而对某一特定地区而言,在某一时期处于拉张成盆,接受巨厚沉积,而在另一时期则可能转换成挤压造山,形成强烈的挤压构造变形带。由于构造研究源于造山带,造山带又以挤压变形为特色,以致曾长期忽视拉张伸展作用及其形成的伸展构造。关于伸展构造的重要性,马杏垣教授曾精辟地指出,“其实,引张作用也造就了全球范围的构造现象,其规模甚至比挤压变动还更大”。伸展构造与石油、天然气、固体资源矿产、地质灾害及地震等有成因上的联系,与国民经济可持续发展息息相关。
由于在一定条件下地壳水平运动与垂直运动可以互相转化,因此区域性隆起上升作用又可导致地壳表层的侧向拉张,进而形成伸展构造;按正断层的各种组合,伸展构造主要有以下几种构造类型:
(1)地堑、地垒及盆岭构造
地堑 地堑主要由两条走向基本一致的相向倾斜的正断层构成。两条正断层之间有一个共同的下降盘(图6-7A)。巨型地堑系应属裂谷,下面将专门讨论,这里主要讨论一般规模的大中型地堑。构成大中型地堑边界的正断层常常不是一条单一的断层,而是由数条产状相近的正断层构成一个同向倾斜的阶梯式断层系列。两侧正断层可以是均等发育的,也可以是一侧断层较另一侧发育。
图6-7 地堑和地垒
地垒 地垒主要由两条走向基本一致倾斜方向相反的正断层构成(图6-7B)。两条正断层之间有一个共同的上升盘。组成地垒两侧的正断层可以单条产出,也可由数条产状相近的正断层组成,形成两个依次向两侧断落的阶梯状断层带。
通常情况下,地堑和地垒相伴发育,且常发育在褶皱和缓地区。地堑在地貌上呈狭长的谷地或成串展布的长条形盆地与湖泊,如我国规模较大的汾渭地堑,世界上著名的莱茵地堑、贝加尔湖地堑等。地垒则常呈断块隆起山地。大型地堑和地垒形成盆岭型构造 地貌单元。
盆岭构造 是地壳大规模伸展活动的一种表现,是指在拉张伸展构造动力学环境下(如热隆伸展、陆隆伸展),因地壳差异隆升形成由不对称的纵向单面山(山岭)及其间的盆地组合而成的构造地貌单元。其构造样式主要表现为:地堑、地垒、掀斜式阶梯断层等。美国西部科迪勒拉山系的盆岭区是建立盆岭构造的经典地区。盆岭构造与热隆及造陆隆升的山岭、高原密切相关,往往是造陆运动的结果。我国鄂西峡东地堑地垒群也属这类构造。
(2)阶梯状断层及箕状构造
阶梯状断层由若干条产状基本一致的正断层组成。各条断层的上盘依次向同一方向断落,构成阶梯式(图6-8A)。
图6-8 阶梯状断层和抬斜断块
阶梯状断层在区域性抬斜过程中常发生一定旋转形成阶梯状抬斜断块(图6-8B)。这种阶梯状抬斜断块在地形上表现为单面山与山谷间列景观。一些在地质历史中发育的阶梯式抬斜断块在地形上已不明显,但是可以反映在断陷沉积上,为一系列平行的箕状构造或称半地堑盆地(图6-9)。这类箕状构造在我国东部中、新生代盆地中十分发育,如中生代华北盆地、松辽盆地等。
图6-9 山东济阳坳陷中的箕状构造
(据石油工业部)
(3)环状断层和放射状断层
若干弧形或半环状断层围绕一个中心呈同心圆状排列,即构成环状断层。若干条断层自一个中心呈辐射状排列,即构成放射状断层。环状和放射状断层往往是隆拱作用引起平面引张的结果。两者可以在同一构造上产出,也可以单独发育(图6-10)。
(4)雁列式断层
若干条近平行的断层呈斜向错列展布,便构成雁列式断层(图6-11)。雁列式断层带的走向与其排列的总体方向(雁列轴)成30°~45°角斜交。在我国南方这类断层常常控制了中小型红色盆地的发育,使红盆呈雁列式展布。如湖南东部汨罗、平江、醴攸、茶永诸盆地,单个盆地走向北东30°,构成了近南北向的盆地带;江西赣州-于都一带各小型红色盆地也显示明显的雁列式组合。
图6-10 环状断层和放射状断层
图6-11 雁列式断层
(5)裂谷
裂谷是区域性伸展隆起背景上形成的巨大窄长断陷,切割深,发育演化期长,常伴有火山岩沉积。1984年格雷戈里(JWGregory)研究东非裂谷带时正式提出。从结构上看,裂谷是区域性大型地堑系,过去常常将它作为大地堑的同义词。它在地质和地球物理等方面均具有一定特征,所以,单从构造上把裂谷理解为大型地堑是不全面的。有的裂谷一侧为主干断裂,另一侧断裂规模较小,两侧断裂并不对称。
按照裂谷发育的区域构造部位及其地质构造特征,可分为大洋裂谷、大陆裂谷和陆间裂谷。大西洋中央海岭上的裂谷是大洋裂谷的典型;东非裂谷是大陆裂谷的典型;红海裂谷是陆间裂谷的典型。以下仅论述大陆裂谷特征。
大陆裂谷的主要特征如下:
1)裂谷是由一系列以正断层为主的地堑、半地堑组成的复杂地堑系,通常发育于区域性隆起的轴部,表现为断陷谷和断陷盆地等构造-地貌景观,反映岩石圈的伸展作用。
2)裂谷中往往沉积一套巨厚的包括磨拉石之类的碎屑沉积,常伴有蒸发岩、火山熔岩和火山碎屑沉积。裂谷沉积中常包含重要的沉积矿产。
3)裂谷往往是浅源地震带和火山带。裂谷带内的地球物理场一般表现为巨大的负布格重力异常和负磁异常,或者为负背景值上的正异常。裂谷的边界一般表现为明显的重力梯度带和磁力梯度带。大陆裂谷热流值一般较高,但变化幅度较大。
4)大陆裂谷的岩浆岩有两类共生组合:①大陆溢流玄武岩,主要为拉斑玄武岩,也包括碱性玄武岩及其深成侵入岩体;②双峰式组合,可以是拉斑玄武岩-流纹岩套,也可以是碱性玄武岩-响岩或粗面岩套。
5)深部结构上,裂谷下地幔升高,地壳变薄,玄武岩层下普遍存在着波速较低的壳幔物质混合组成的裂谷堑。
世界上最著名的大陆裂谷是东非裂谷(图6-12,6-13)。这条裂谷自赞比亚河口向北延伸到红海,顺红海北上直达小亚细亚,长约6000km。沿线为一系列巨大的湖泊、洼地、峡谷和陡崖,这里也是一条巨大的火山-地震带。东非裂谷正处于即将发生新洋壳的孕育阶段,而红海已处于新洋壳的形成初期。
图6-12 东非红海裂谷带简图
(据EEМилановский简化)
图6-13 红海裂谷剖面
(据ГГазиев和ҖBape简化)
上图—过红海中段;下图—过红海南段
我国的汾渭地堑带,以渭河地堑和汾河地堑为主体,由一系列雁列式地堑-盆地组成。北段汾河地堑位于山西台背斜区域隆起轴部。该带地壳厚度较薄,地震强度大,频度高,震源浅,一般深10~30km,所以,从地质特征等各个方面看,它显示出裂谷的特征。
郯庐大断裂是我国东部一条巨大的断裂,对它的性质有不同的认识,看来至少在中生代晚期曾显示裂谷性质。
关于裂谷的成因,一直是地质学家关注的课题,曾提出过不同的假说。最著名的是克鲁斯(HCloos)于1919年提出的隆张说。他认为裂谷是区域性穹隆生长时沿轴部张裂断陷形成的。近年来通过深部构造等方面的研究,认为地幔柱上涌是裂谷形成的主因。区域性隆起和拉伸只是这种作用的表现或结果。
还要指出,裂谷是地壳或岩石圈伸展的一种表现,但是在地堑等引张性构造格局中,总是显示出一定的平移作用,而且有挤压引起的逆冲断层等构造。
自20世纪60年代初板块学说提出后,裂谷作用一直是区域构造研究中的一项重大课题。威尔逊(JTWilson,1973)从板块运动的观点出发,把裂谷作用与全球构造有机地联系起来,认为大洋裂谷、陆间裂谷和大陆裂谷共同构成全球裂谷系。大陆裂谷→陆间裂谷→大洋裂谷是一演化系列,就是大陆开裂、漂移、海底扩张的过程。不过,并非所有的大陆裂谷都演化成大洋裂谷。大洋演化可分为六个阶段:
胚胎期 大陆裂谷发育阶段,如东非裂谷;
幼年期 陆间裂谷发育阶段,如红海;
成年期 以大西洋为代表;
衰退期 以太平洋为代表;
终了期 以地中海为代表;
遗迹 以喜马拉雅山为代表。
这个从大洋发生、发展到衰亡的整个过程,即所谓的威尔逊旋回。
裂谷在现代全球构造中的重要地位是人所共知的。但在整个地质历史中裂谷作用又占有怎样的地位和意义呢?EE米兰诺夫斯基从裂谷规模、建造、构造组合、分布规律和演化历史等几个方面,将裂谷发育划分为以下阶段:
太古宙裂谷作用阶段 太古宙时期地壳薄,热力高,活动性大,岩浆活动渗透性大,这种裂谷以绿岩带为代表,兼具地槽与裂谷的特点;
古元古代裂谷作用 裂谷与地槽开始分化,但分化并不明显;
新元古代至古生代 裂谷与地槽明显分化,但两者关系密切,坳拉槽是其主要表现型式;
中新生代裂谷作用中新生代大陆解体,次生洋盆形成,典型现代裂谷出现。典型裂谷出现于中新生代是普遍公认的事实。不过许多学者均认为裂谷出现的时期可能更早,至少在古生代时期已经发生。
坳拉槽(aulacogen)是克拉通发育早期的重要伸展构造,一般认为是与大洋张开有关的衰亡裂谷,作为三联裂谷的“退化臂”。
(6)拆离断层及变质核杂岩
拆离断层(detachment fault)也称剥离断层(denudational fault),1972年由RLArmstrong提出,指发育于美国西部盆岭区的犁状低角度正断层,它使较浅层次的年轻地层直接覆盖在较深层次的老地层之上。一般产出于盖层与基底之间,其上、下盘岩石的变形行为明显不同,上盘为脆性伸展变形,下盘为韧性变形,形成糜棱岩带,并可因其被拆离逐渐上升至浅表而被脆性变形叠加,断层带之下的古老变质岩和侵入岩则常成穹状隆起而组成“核”,称变质核杂岩,其上部为糜棱岩化变质岩。其中绿泥石角砾岩即为近上盘的糜棱岩受脆性变形叠加而形成的断层岩。
变质核杂岩(metamorphic core complex)是因构造拆离伸展的未变质沉积盖层所覆盖的、呈孤立穹隆状的结晶岩构成的隆起(PJConey,1980)(图6-14)。
根据经典地区变质核杂岩和我国一些地区变质核杂岩的发育状况和结构,一般认为变质核杂岩具备以下基本特征:
图6-14 剥离断层和变质核杂岩剖面结构示意图
(据Lister,1989,转引自朱志澄等,1990)
1)变质核杂岩由深层抽拉抬升的变质基底(下盘)和变形较轻(有时亦发生变质)的盖层(上盘)组成,外形近圆形或椭圆形,直径一般十余千米至数十千米,呈分散孤立的穹隆状产出。
2)基底与盖层以规模巨大的低角度拆离断层分隔;基底岩石属塑性变形域,内部有岩体侵入,变形强烈;顶部总是发育一条厚达几十米甚至几百米厚的糜棱岩带,糜棱岩化随着与拆离断层距离的增加而减弱,向深部过渡为正常片麻岩。
3)拆离断层原始产状近水平,在伸展拆离中变成犁式,其上盘以发育多米诺式断层为特征,亦有次级顺层断层并使地层拆离减薄和缺失,使得地层柱中的上部地层直接覆于基底变质杂岩之上,变形属脆性域。盖层也可因侵入作用而变质,如安徽安庆洪镇变质核杂岩中的盖层已发生不同程度的糜棱岩化。原始拆离断层可因穹隆作用而呈穹状。在长期发展中可形成不止一条拆离断层所组成的拆离断层带。
4)拆离断层(带)是一条岩石强烈破碎带,与其接触的糜棱岩带的顶部可卷入碎裂岩化而形成绿泥石微角砾岩(超碎裂岩);随着顺拆离断层倾斜向下趋近塑性域,碎裂带逐渐转变为狭窄的网状韧性剪切带,进而汇入糜棱岩构成的韧性剪切带。
变质核杂岩可因伸展于其周缘形成箕状断陷盆地,其中常常堆积了一套粗碎屑沉积。箕状断陷是与变质核杂岩同步或稍晚发育的,所以对其中沉积物的分析有助于确定变质核杂岩形成时期和发育过程;在以滑动摩擦作用为主导变形机制的拆离断层上盘底部形成了沿拆离断层面向下运动的连续倒转褶皱、平卧褶皱及伴生的低缓角度正断层组合,其构造样式类似于地壳浅层次的重力滑动构造样式(图6-15)。
(7)岩墙群
岩墙是横切围岩构造的板状侵入岩体,常成群出现,呈平行或放射状排列,是伸展构造的一种重要样式。我国大同、集宁地区古老变质岩系分布区的辉绿岩墙群、三峡地区黄陵花岗岩体内部的粗玄岩墙群,与加拿大、格陵兰等古老大陆上的基性岩墙群(1000~600Ma)一样,均反映了中元古代-新元古代全球范围内大陆壳的相对稳定性及大规模的伸展滑动(BFWindley,1977)。在裂谷带、变质核杂岩的深部及大型隆起和坳陷的过渡带,都是岩墙群发育的优选部位,因此,可以借助于岩墙群计算伸展量,研究地壳在垂向和水平方向上不同部位的伸展变形之间的联系(图6-16)。
图6-15 重力滑动构造的结构要素
(据马杏垣,索书田等,1981,转引自朱志澄等,1990)
1—下伏系统;2—润滑层;3—滑面;4—滑动系统;5—前缘推挤带
图6-16 垂向上岩墙群发育伸展变形
(据Helgason et al,1985,转引自朱志澄等,1990)
伸展构造也与挤压构造一样,具有多级次、多层次、多类型、多样式的特点。这方面的研究在理论上和实际上,尤其在寻找能源方面具有重要意义。需要指出的是,区域性岩浆活动,尤其是大规模的玄武岩溢流活动,如我国二叠纪峨眉山玄武岩流,也是区域性伸展作用的具体表现。
以上就是关于地质构造中,正逆断层的形成机制是什么断层有哪些参数全部的内容,包括:地质构造中,正逆断层的形成机制是什么断层有哪些参数、正断层及伸展构造、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!