避雷针的原理是什么

七寸照片多大2023-04-30  49

在雷雨天气,高楼上空出现带电云层时,迅雷针和高楼顶部都被感应上大量电荷,由于避雷针针头是尖的,而静电感应时,导体尖端总是聚集了最多的电荷.这样,避雷针就聚集了大部分电荷.避雷针又与这些带电云层形成了一个电容器,由于它较尖,即这个电容器的两极板正对面积很小,电容也就很小,也就是说它所能容纳的电荷很少.而它又聚集了大部分电荷,所以,当云层上电荷较多时,避雷针与云层之间的空气就很容易被击穿,成为导体.这样,带电云层与避雷针形成通路,而避雷针又是接地的.避雷针就可以把云层上的电荷导人大地,使其不对高层建筑构成危险,保证了它的安全.

避雷针

唐代《炙毂子》一书在记载了这样一件事:汉朝时柏梁殿遭到火灾,一位巫师建议,将一块鱼尾形状的铜瓦放在层顶上,就可以主防止雷电所引起的天火。屋顶上所设置的鱼尾开头的瓦饰,实际上兼作避雷之用,可认为是现代避雷针的雏形。而早在以前,中国已经有了避雷针,一般以龙头为装饰,龙嘴里有避雷针头。

法国旅行家卡勃里欧别·戴马甘兰1688年所著的《中国新事》一书中记有:中国屋脊两头,都有一个仰起的龙头,龙口吐出曲折的金属舌头,伸向天空,舌根连结一根细的铁丝,直通地下。这种奇妙的装置,在发生雷电的时刻就大显神通,若雷电击中了屋宇,电流就会从龙舌沿线睛行至地底,避免雷电击毁建筑物。这说明,中国古代建筑上的如雷装置,在大批量和结构上已和现代避雷针基本相似。

现代避雷针是美国科学家富兰克林发明的。富兰克林认为闪电是一种放电现象。为了证明这一点,他在1752年7月的一个雷雨天,冒着被雷击的危险,将一个系着长长金属导线的风筝放飞进雷雨云中,在金属线末端拴了一串铜钥匙。当雷电发生时,富兰克林手接近钥匙,钥匙上迸出一串电火花。手上还有麻木感。幸亏这次传下来的闪电比较弱,富兰克林没有受伤。在成功地进行了捕捉雷电的风筝实验之后,富兰克林在研究闪电与人工摩擦产生的电的一致性时,他就从两者的类比中作出过这样的推测:既然人工产生的电能被尖端吸收,那么闪电也能被尖端吸收。他由此设计了风筝实验,而风筝实验的成功反过来又证实了他的推测。他由此设想,若能在高物上安置一种尖端装置,就有可能把雷电引入地下。富兰克林把这种避雷装置:把一根数米长的细铁棒固定在高大建筑物的顶端,在铁棒与建筑物之间用绝缘体隔开。然后用一根导线与铁棒底端连接。再将导线引入地下。富兰克林把这种避协装置称为避雷针。经过试用,果然能起避雷的作用。避雷针的发明是早期电学研究中的第一个有重大应用价值的技术成果。

而避雷针在最初发明与推广应用时,教会曾把它视为不祥之物,说是装上了富兰克林的这种东西,不但不能避雷,反而会引起上帝的震怒而遭到雷击,但是,在费城等地,拒绝安置避雷针的一些高大教堂在大雷雨中相继遭受雷击。而比教堂更高的建筑物由于已装上避雷针,在大雷雨中却安然无恙。

由于避雷针已在费城等地初显神威,它立即传到北美各地,随后又传入欧洲。

避雷针传入法国后,法国皇家科学院院长诺雷等人开始反对使用避雷针,后来又认为圆头避雷针比富兰克林的尖头避雷针好。但法国人仍然选用富兰克林的尖头避雷针。据说当时的法国人把富兰克林看作是苏格拉底的化身。富兰克林成了人们崇拜的偶像。他的肖像被人们珍藏在枕头下面,而仿照避雷针式样的尖顶帽成了1778年巴黎最摩登的帽子。

避雷针传入英国后,英国人也曾广泛采用了富兰克林的尖头避雷针。但美国独立战争爆发后,富兰克林的尖头避雷针在英国人眼中似乎成了将要诞生的美国的象征。据说英国当时的国王乔治二世出于反对美国革命的盛怒,曾下令把英国全部后家建筑物上的避雷针的尖头统统换成圆头,以示与作为美国象征的尖头避雷针势不两立,这真是避雷针应用史上一件有趣的事情。

它的工作原理是:

在雷雨天气,高楼上空出现带电云层时,迅雷针和高楼顶部都被感应上大量电荷,由于避雷针针头是尖的,而静电感应时,导体尖端总是聚集了最多的电荷.这样,避雷针就聚集了大部分电荷.避雷针又与这些带电云层形成了一个电容器,由于它较尖,即这个电容器的两极板正对面积很小,电容也就很小,也就是说它所能容纳的电荷很少.而它又聚集了大部分电荷,所以,当云层上电荷较多时,避雷针与云层之间的空气就很容易被击穿,成为导体.这样,带电云层与避雷针形成通路,而避雷针又是接地的.避雷针就可以把云层上的电荷导人大地,使其不对高层建筑构成危险,保证了它的安全.

避雷针为什么要装在楼顶?

带电的云,首先是从上往下运行,在高处安避雷针,就将首先将云中的电放掉,以后到房子接触云的时候,就基本没有或只有少部分电而没有危险了

避雷针的接闪器可以用铜、镀锡铜、铝、铝合金、热浸镀锌钢、不锈钢、外表面镀铜的钢等各种材料制成。

在雷雨天气,高楼上空出现带电云层时,避雷针和高楼顶部都被感应上大量电荷,由于避雷针针头是尖的,所以静电感应时,导体尖端总是聚集了最多的电荷。这样,避雷针就聚集了大部分电荷。避雷针又与这些带电云层形成了一个电容器,由于它较尖,即这个电容器的两极板正对面积很小,电容也就很小,也就是说它所能容纳的电荷很少。而它又聚集了大部分电荷,所以,当云层上电荷较多时,避雷针与云层之间的空气就很容易被击穿,成为导体。这样,带电云层与避雷针形成通路,而避雷针又是接地的,避雷针就可以把云层上的电荷导入大地,使其不对高层建筑构成危险,保证了它的安全。

分类: 教育/科学 >> 科学技术

解析:

避雷针的原理并不是阻挡雷电,而是沿着安全的路径使云层里的电荷和地面的电荷中和,从而保护建筑物免受雷电的袭击。 云层的底部带负电荷,因此感生的正电荷便会在云层下的地面聚集。根据静电学的原理,带电导体表面上较尖的地方,电苛密度会较其他地方高,所以避雷针的尖端会比其他地方 了更多的正电荷,引导云层中的负电荷沿着避雷针频密地往地面放电,以免云层中的负电荷累积过多,一次过放电时形成了具有巨大破坏力的雷电,击中地面上聚集了较多正电荷的建筑物。那么,激光又与避雷针有甚么关系呢?原来,合适的激光可以把空气电离,产生一条由正电荷所组成的导电通道,负电苛便会乖乖地沿着这条通道走了,到了接近地面时,便会在预先准备好的传统避雷针放电。这种方法可以更有效地诱导云层的电苛通过避雷针放电,从而大大提高了传统避雷针的效率。现在,物理学家正研究如何利用紫外线激光来使两个电极放电;他们以高电压的电极来模拟雷电产生时的情形,并已成功用激光把两个相隔一段距离的电极放电。展望将来,「激光避雷针」可以设置在机场、医院和核电厂等地方,保护人类

避雷针的工作原理

防雷接地工程

防雷装置的组成

建筑物的防雷装置一般由三部分组成:接闪器、引下线和接地装置。

接闪器

接闪器是用来接受雷电流的金属导体。通常有避雷针、避雷带、避雷网以及兼作接闪的金属屋面和金属构件(如金属烟囱,风管)等。

1.避雷针

避雷针是安装在建筑物上的针形导体。它能将雷云的放电通路吸引到避雷针本身,由它及与它相连的引下线和接地体将雷电流安全导人地中,确保建筑物免受雷击。避雷针通常采用镀锌圆钢或镀锌钢管制成。

2.避雷带和避雷网

避雷带是用圆钢或扁钢装于建筑物顶部或突出的部位,如屋脊、屋檐、屋角、女儿墙和山墙等的条形长带。避雷网是纵横交错的避雷带叠加在一起,形成多个网孔,是接近全部保护的方法,用于重要的建筑物。

避雷带和避雷网可以采用镀锌圆钢或扁钢,圆钢直径不得小于8mm;扁钢截面不得小于48mm2,厚度不得小于4mm装设在烟囱顶端的避雷环,其截面不得小于100mm2。

3.避雷线

避雷线是截面不小于35mm2的镀锌钢绞线,装在架空线路之上,以保护架空线路免受直接雷击。

引下线

引下线是把雷电流引到接地装置的金属导体。一般采用圆钢或扁钢,宜优先采用圆钢。

1.引下线的选择和设置

采用圆钢时,直径不应小于8mm;采用扁钢时,其截面不应小于48mm2,厚度不应小于4mm。烟囱上安装的引下线,圆钢直径不应小于12mm;扁钢截面不应小于100mm2,厚度不应小于4mm。

引下线可沿建筑物外墙敷设,并经最短路线接地,现在的房屋多采用暗敷,但截面应加大一级。

引下线可利用建筑物的金属构件(如消防梯等),混凝土柱内钢筋、烟囱的金属爬梯、钢柱等,但其所有部件之间均应连成电气通路。

2.断接卡

断接卡于是用来便于运行、维护和检测接地电阻用的。用专设引下线时在各引下线上于距地面0.3~1.8m之间设置断接卡,以便于测量接地电阻以及检查引下线、接地线的连接状况。断接卡应有保护措施。

利用混凝土内钢筋做引下线并同时采用基础接地体时,可不设断接卡,但应在室外的适当地点设若干连接板,该连接板町供测量、接人工接地体和作等电位连接用。

接地装置

接地装置是接地体(又称接地极)和接地线的总合。其作用是把雷电流迅速流散到大地土壤中去。

1.接地体

接地体分人工接地体和自然接地体两种。自然接地体即兼作接地用的直接与大地接触的各种金属构件,如钢筋混凝土基础中的钢筋,建筑物的钢结构、行车钢轨、埋地的金属管道(可燃液体和可燃气体管道除外)等。人工接地体是直接打入地下专作接地用的各种型钢或钢管等。按其敷设方式可分为垂直接地体和水平接地体。

2.接地线

接地线是从引下线断接卡或换线处至接地体的连接导体。

防雷装置的安装

1 接闪器的安装

接闪器的安装内容有避雷针的安装和避雷带(网)的安装。

1).避雷针的安装

避雷针的安装可按相关的标准图集做。图5-2是避雷针在屋面上的安装详图。其安装注意事项如下。

安装注意事项

一、划分等级:

根据《建筑物电子信息系统防雷技术规范》GB50343-2004,确定信息系统的防雷等级。不同等级的防雷要求不一样。

信息系统的防雷保护应采用外部和内部结合的原则。

二、注意事项:

1、接地:宜采用建筑物内墙柱结构钢筋作为引下线,不应采用用做防直击雷引下线的结构主筋。施工前应测试其接地电阻是否合格。必须采用人工接地体的,应特别注意接地体及引出线的材质、规格、位置、防人身伤害、防机械损伤、防反击措施。同时做好机房内等电位连接,避免出现一个机房内存在两个地的问题。

2、等电位连接:

机房内应设置金属网格,将机房内所有金属物体(地板、线槽、机柜外壳、PE线、SPD等)就近与金属网格连接,不能设置金属网格的也应设置连接端子板(LEB)。网格或LEB的接地线应从对角的两根内墙柱引出,两根接地线的长度不应相同。采用一根的有可能出现两个问题:一是接地线松动或断开导致系统失效,二是接地线的长度恰好与信息系统的工作波长相同或是其整倍数,对系统运行造成干扰。

连接线的材质、规格、工艺应符合规范要求,连接点应紧固。

3、SPD:

SPD的电气参数选择应符合相关防雷等级要求,不能将用作C级保护的用到B级位置。特别注意信息线路专用SPD的型号选择,错误的选择会导致太大的插入损耗从而过度降低线路的速率。

SPD的设置应考虑级间能量配合,不能满足线路长度10m、5m要求的应设置退耦器、或采用一二级合一的SPD、或带提前点火装置的SPD。

SPD与线路连接最好采用凯文接线方式以降低残压值,SPD的接地线原则为短、粗、直,太长的接地线和弯曲过多的接地线会大大降低SPD的泄放效果。

SPD应设置在较隐蔽并易于维护的位置,安装牢固并有防爆措施。状态显示窗口应能够被人员轻松看到。

电气系统的SPD应设置2~3级,信息线路设置1~2级。

4:合理布线:

线路布置应避免形成大的闭合回路,减少电磁感应的影响。

引下线、电气线路和信息线路不应同槽敷设,不能避免的应采取屏蔽措施或加金属隔板。

引下线的布置应尽量远离人员能够接近的位置。

提醒甲方电气设备的位置应尽量远离建筑物的外墙柱,避免高电压反击。

5、其他:

卫星机房一般设置在建筑物的顶层,其天馈头应采取防直击雷措施,引入室内的线路应做好屏蔽。

带有摄像头的监控机房注意原则同上。

电话机房的SPD有些是采用间隙型的,这种SPD的反应速度可能不够快。型号选择上应特别注意。

三、资质要求:

依据中国气象局10号令要求,设计单位应具有相应防雷工程专业设计资质,施工单位应具有相应防雷工程专业施工资质,采用的防雷产品应在当地气象主管机构备案。

补充一点:楼下说“天馈头应采取防直击雷措施,这安全吗??最好的办法还是采用设避雷针保护”。对此我很不理解。依据相关防雷规范的解释,所谓防直击雷措施包括避雷针、带、网、线、金属构件、金属护栏、金属爬梯等等屋面上能够承受直接雷击并良好泄放入地的永久性金属物。“避雷针”已包含在“防直击雷措施”概念中。如果是指的避雷器,则所有从LPZ0区进入LPZ1区的金属物均应作等电位连接或安装SPD,这点是不言自明的。

避雷针作为端引,高于建筑等其他设备,在易受雷击的区域吸收雷击电能,与避雷线、引下线、泄放区构筑防雷网,使建筑等设备免受雷击破坏。避雷器的作用详细见下属文章:

避雷器和电涌保护器运用说明

目录

一、 定义

二、 防雷器与浪涌保护器的比较

三、 线路避雷器运用及其说明

四、 浪涌保护器设计原理、特性、运用范畴

五、 参考依据与文献

一、定义

1避雷器

避雷器是变电站保护设备免遭雷电冲击波袭击的设备。当沿线路传入变电站的雷电冲击波超过避雷器保护水平时,避雷器首先放电,并将雷电流经过良导体安全的引入大地,利用接地装置使雷电压幅值限制在被保护设备雷电冲击水平以下,使电气设备受到保护。

2浪涌保护器

也叫防雷器,是一种为各种电力设备、仪器仪表、通讯线路等提供安全防护的装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。

 从以下资料可以看出,浪涌保护器也是防雷器的一种,但是有很大的区别。

二、避雷器与浪涌保护器的比较

避雷器指建筑物避雷器,与避雷针、接地排等一起形成一个法拉第笼,防止建筑物被损坏,避雷器的基本原理是把雷击电磁脉冲(LEMP)导入地进行消解。但是为什么在安装避雷器后仍有大量的建筑物及其里面的设备被雷击损坏呢

首先,避雷器的导线采用铜铁合金,因此其导线性能是有限的,反应速度仅为200微妙(uS)。而LEMP的半峰速度(能量达到最大值)为20微妙(uS),也就是说LEMP的速度快于避雷器,这样避雷器把第一次直击雷导入地后,对于二次雷、三次雷往往反应不过来,直接泄漏打在设备上。也就是说,避雷器对二次雷、三次雷几乎不起作用。

其次,LEMP导入地后,会从地返回形成感应雷。感应雷会从所有含有金属的导线上泄漏到设备(网线、电源线、信号线、传输线等)。由于避雷器是单向作用的,因此它对感应雷不起作用,感应雷可以直接打坏设备。更何况,导线部分往往不会安装避雷器。

再次,浪涌只有20%来自雷击等外部环境,80%来自系统内部运行,避雷器对这80%是不起任何作用的。

根据分析来回答电涌保护器(SPD,有的称浪涌保护器)和避雷器的区别:

1、应用范围不同(电压):避雷器范围广泛,有很多电压等级,一般从04kV低压到500kV超高压都有(详见楼上分析),而SPD一般指1kV以下使用的过电压保护器;

2、保护对象不同:避雷器是保护电气设备的,而SPD浪涌保护器一般是保护二次信号回路或给电子仪器仪表等末端供电回路。

3、绝缘水平或耐压水平不同:电器设备和电子设备的耐压水平不在一个数量级上,过电压保护装置的残压应与保护对象的耐压水平匹配。

4、安装位置不同:避雷器一般安装在一次系统上,防止雷电波的直接侵入,保护架空线路及电器设备;而SPD浪涌保护器多安装于二次系统上,是在避雷器消除了雷电波的直接侵入后,或避雷器没有将雷电波消除干净时的补充措施;所以避雷器多安装在进线处;SPD多安装于末端出线或信号回路处。

5、通流容量不同:避雷器因为主要作用是防止雷电过电压,所以其相对通流容量较大;而对于电子设备,其绝缘水平远小于一般意义上的电器设备,故需要SPD对雷电过电压和操作过电压进行防护,但其通流容量一般不大。(SPD一般在末端,不会直接与架空线路连接,经过上一级的限流作用,雷电流已经被限制到较低值,这样通流容量不大的SPD完全可以起到保护作用,通流值不重要,重要的是残压。)

6、其它绝缘水平、对参数的着眼点等也有较大差异。

7、浪涌保护器适用于低压供电系统的精细保护,依据不同的交直流电源电床可选择各种相应的规格。电源浪涌保护器一精细由于终端设备离前级浪涌保护器距离较大,从而使得该线路上容易产生振荡过电压或感应到其他过电压。适用于终端设备的精细电源浪涌保护,与前级浪涌保护器配合使用,则保护效果更好。

8、避雷器主材质多为氧化锌(金属氧化物变阻器中的一种),而浪涌保护器主材质根据抗浪涌等级、分级防护(IEC61312)的不同是不一样的,而且在设计上比普通防雷器精密得多。

9、从技术上来说,避雷器在响应时间、限压效果、综合防护效果、抗老化特性等方面都达不到浪涌保护器的水平。

共同点:都能防止雷电过电压

因为上述原因,SPD也就应运而生。

SPD的原理是把LEMP转化为热能进行消解,由于不是导通式,反应速度非常快,可低于纳秒,可以有效防止二次雷和三次雷。SPD分为电源SPD,精密仪器SPD,数字线路SPD,而且也是双向作用的,因此可以有效防止感应雷。因此,IEEE标准规定,在安装避雷器的同时应该加上SPD,以形成防雷的双保险。

此外,SPD对于内部的80%的浪涌也能起到有效抑制作用,这是避雷器所不能做到的。

总体上讲,避雷器是专门针对电气设备免受雷电冲击波所设置的防护设备,而浪涌保护器是比避雷器更先进的防护设备,除开雷电冲击波,还可以极大程度消弱电力系统自身所产生的其它破坏性浪涌冲击。在用电单位高压进线系统(10KV及以上)已装设避雷器的情况下,在低压系统中就应装设防护功能更精密的浪涌保护器。

三、避雷器运用与说明

1、线路避雷器防雷的基本原理

雷击杆塔时,一部分雷电流通过避雷线流到相临杆塔,另一部分雷电流经杆塔流入大地,杆塔接地电阻呈暂态电阻特性,一般用冲击接地电阻来表征。

雷击杆塔时塔顶电位迅速提高,其电位值为

Ut=iRd Ldi/dt(1)

式中i——雷电流;

Rd——冲击接地电阻;

Ldi/dt——暂态分量。

当塔顶电位Ut与导线上的感应电位U1的差值超过绝缘子串50的放电电压时,将发生由塔顶至导线的闪络。即Ut-U1>U50,如果考虑线路工频电压幅值Um的影响,则为Ut-U1 Um>U50。因此,线路的耐雷水平与3个重要因素有关,即线路绝缘子的50放电电压、雷电流强度和塔体的冲击接地电阻。一般来说,线路的50放电电压是一定的,雷电流强度与地理位置和大气条件相关,不加装避雷器时,提高输电线路耐雷水平往往是采用降低塔体的接地电阻,在山区,降低接地电阻是非常困难的,这也是为什么输电线路屡遭雷击的原因。

加装避雷器以后,当输电线路遭受雷击时,雷电流的分流将发生变化,一部分雷电流从避雷线传入相临杆塔,一部分经塔体入地,当雷电流超过一定值后,避雷器动作加入分流。大部分的雷电流从避雷器流入导线,传播到相临杆塔。雷电流在流经避雷线和导线时,由于导线间的电磁感应作用,将分别在导线和避雷线上产生耦合分量。因为避雷器的分流远远大于从避雷线中分流的雷电流,这种分流的耦合作用将使导线电位提高,使导线和塔顶之间的电位差小于绝缘子串的闪络电压,绝缘子不会发生闪络,因此,线路避雷器具有很好的钳电位作用,这也是线路避雷器进行防雷的明显特点。

以往输电线路防雷主要采用降低塔体接地电阻的方法,在平原地带相对较容易,对于山区杆塔,则往往在4个塔脚部位采用较长的辐射地线或打深井加降阻剂,以增加地线与土壤的接触面积降低电阻率,在工频状态下接地电阻会有所下降。但遭受雷击时,因接地线过长会有较大的附加电感值,雷电过电压的暂态分量Ldi/dt会加在塔体电位上,使塔顶电位大大提高,更容易造成塔体与绝缘子串的闪络,反而使线路的耐雷水平下降。因为线路避雷器具有钳电位作用,对接地电阻要求不太严格,对山区线路防雷比较容易实现。

2 线路避雷器使用及动作情况

淄博电业局管辖的110kV龙博1线和35kV南黑线、炭谢线位于丘陵和山地,多年来经常发生雷击跳闸故障,据统计110kV龙博1线在1989~1996年共发生5次雷击掉闸,35kV南黑线、炭谢线分别在1994~1997年各发生6次雷击掉闸,虽然采取了各种措施,效果均不明显。1997年在易遭雷击的龙博1线62~64号和南黑线87、89、90号及炭谢线51号分别装设了7组共20只线路型氧化锌避雷器,安装方式是在龙博1线和南黑线各悬挂3组9只,在炭谢线51号上相和下相各悬挂1只(该杆不久前遭雷击),经过2个雷雨季节的考验,线路未发生故障及掉闸事故。

3 避雷器的选型及安装维护

线路避雷器有2种类型,即带串联间隙和无串联间隙2种,因运行方式不同和电站避雷器相比在结构设计上也有所区别。

线路避雷器安装时应注意:(1)选择多雷区且易遭雷击的输电线路杆塔,最好在两侧相临杆塔上同时安装;(2)垂直排列的线路可只装上下2相;(3)安装时尽量不使避雷器受力,并注意保持足够的安全距离;(4)避雷器应顺杆塔单独敷设接地线,其截面不小于25mm2,尽量减小接地电阻的影响。

投运后进行必要的维护:(1)结合停电定期测量绝缘电阻,历年结果不应明显变化;(2)检查并记录计数器的动作情况;(3)对其紧固件进行拧紧,防止松动;(4)5a拆回,进行1次直流1mA及75参考电压下泄漏电流测量。

四、 浪涌保护器设计原理、特性、运用范畴

 设计原理

在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地线连接在一起。

MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。

这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。

另一种常见的浪涌保护装置是气体放电管。这些气体放电管的作用与MOV相同 ——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现此功能。当电压处于某一特定范围时,该气体的组成决定了它是不良导体。如果电压出现浪涌并超过这一范围,电流的强度将足以使气体电离,从而使气体放电管成为非常良好的导体。它会将电流传导至地线,直到电压恢复正常水平,随后它又会变成不良导体。

这两种方法都是采用并联电路设计——多余的电压从标准电路流入另一个电路。有几种浪涌保护器产品使用串联电路设计抑制电涌——它们不是将多余的电流分流到另一条线路,而是通过降低流过火线的电量。基本上说,这些抑制器在检测到高电压时会储存电能,随后再逐渐释放它们。制造这种保护器的公司解释说该方法可以提供更好的保护,因为它反应速度更快,并且不会向地线分流,但另一方面,这种分流可能会干扰建筑物的电力系统。

抑制二极管:抑制二极管具有箝位限压功能,它是工作在反向击穿区,由于它具有箝位电压低和动作响应快的优点,特别适合用作多级保护电路中的最末几级保护元件。抑制二极管在击穿区内的伏安特性可用下式表示:I=CUα,上式中α为非线性系数,对于齐纳二极管α=7~9,在雪崩二极管α=5~7

 抑制二极管的技术参数主要有 :

(1)额定击穿电压,它是指在指定反向击穿电流(常为lma)下的击穿电压,这于齐纳二极管额定击穿电压一般在29V~47V范围内,而雪崩二极管的额定击穿电压常在56V~200V范围内。

(2)最大箝位电压:它是指管子在通过规定波形的大电流时,其两端出现的最高电压。

(3)脉冲功率:它是指在规定的电流波形(如10/1000μs)下,管子两端的最大箝位电压与管子中电流等值之积。

(4)反向变位电压:它是指管子在反向泄漏区,其两端所能施加的最大电压,在此电压下管子不应击穿。此反向变位电压应明显高于被保护电子系统的最高运行电压峰值,也即不能在系统正常运行时处于弱导通状态。

(5)最大泄漏电流:它是指在反向变位电压作用下,管子中流过的最大反向电流。

(6)响应时间:10-11us

作为辅助元件,有些浪涌保护器还配有内置保险丝。保险丝是一种电阻器,当电流低于某个标准时,它的导电性能非常好。反之,当电流超过了可接受的标准,电阻产生的热量会烧断保险丝,从而切断电路。如果MOV不能抑制电涌,过高的电流将烧断保险丝,保护连接的设备。该保险丝只能使用一次,一旦烧断就需要更换。

 SPD前端熔断器应根据避雷器厂家的参数安装。

如厂家没有规定,一般选用原则:

根据(浪涌保护器的最大保险丝强度A)和(所接入配电线路最大供电电流B)来确定(开关或熔断器的断路电流C)。

确定方法:

当:B>A时 C小于等于A

当:B=A时 C小于A或不安装C

当:B<A时 C小于B或不安装C

有些浪涌保护器具有线路调节系统,用于滤除“线路噪声”,减小电流波动。这种基本浪涌保护器的系统结构非常简单。火线通过环形扼流线圈接到电源板插座上。扼流线圈只是一个用磁性材料做成的环,外面缠绕着导线——基本的电磁铁。火线中所流经电流的上下波动会给电磁铁充电,使其发出电磁能量,从而消除电流的微小波动。这种“经过调节”的电流更加稳定,可使计算机(或其他电子设备)的供电电流更加平缓。

在电子设计中,浪涌主要指的是电源(只是主要指电源)刚开通的那一瞬息产生的强力脉冲,由于电路本身的非线性有可能有高于电源本身的脉冲;或者由于电源或电路中其它部分受到本身或外来尖脉冲干扰叫做浪涌。它很可能使电路在浪涌的一瞬间烧坏,如PN结电容击穿,电阻烧断等等。 而浪涌保护就是利用非线性元器件对高频(浪涌)的敏感设计的保护电路,简单而常用的是并联大小电容和串联电感。

 浪涌保护器(SPD)的分类

按工作原理分:

(1)开关型:其工作原理是当没有瞬时过电压时呈现为高阻抗,但一旦响应雷电瞬时过电压时,其阻抗就突变为低值,允许雷电流通过。用作此类装置时器件有:放电间隙、气体放电管、闸流晶体管等。

(2)限压型:其工作原理是当没有瞬时过电压时为高阻扰,但随电涌电流和电压的增加其阻抗会不断减小,其电流电压特性为强烈非线性。用作此类装置的器件有:氧化锌、压敏电阻、抑制二极管、雪崩二极管等。

(3)分流型或扼流型

分流型:与被保护的设备并联,对雷电脉冲呈现为低阻抗,而对正常工作频率呈现为高阻抗。

扼流型:与被保护的设备串联,对雷电脉冲呈现为高阻抗,而对正常的工作频率呈现为低阻抗。 用作此类装置的器件有:扼流线圈、高通滤波器、低通滤波器、1/4波长短路器等。

按用途分:

(1)电源保护器:交流电源保护器、直流电源保护器、开关电源保护器等。

(2)信号保护器:低频信号保护器、高频信号保护器、天馈保护器等。

 浪涌保护器及其应用

1、浪涌电压

电路在遭雷击和在接通、断开电感负载或大型负载时常常会产生很高的操作过电压,这种瞬时过电压(或过电流)称为浪涌电压(或浪涌电流),是一种瞬变干扰:例如直流6V继电器线圈断开时会出现300V~600V的浪涌电压;接通白炽灯时会出现8~10倍额定电流的浪涌电流;当接通大型容性负载如补偿电容器组时,常会出现大的浪涌电流冲击,使得电源电压突然降低;当切断空载变压器时也会出现高达额定电压8~10倍的操作过电压。浪涌电压现象日趋严重地危及自动化设备安全工作,消除浪涌噪声干扰、防止浪涌损害一直是关系到自动化设备安全可靠运行的核心问题。现代电子设备集成化程度在不断提高,但是它们的抗御浪涌电压能力却在下降。在多数情况下,浪涌电压会损坏电路及其部件,其损坏程度与元器件的耐压强度密切相关,并且与电路中可以转换的能量相关。

为了避免浪涌电压击毁敏感的自动化设备,必须使出现这种浪涌电压的导体在非常短的时间内同电位均衡系统短接(引入大地)。在其放电过程中,放电电流可以高达几千安,与此同时,人们往往期待保护单元在放电电流很大时也能将输出电压限定在尽可能低的数值上。因此,空气火花间隙、充气式过电压放电器、压敏电阻、雪崩二极管、TVS(Transientvoltagesuppressor)、FLASHTRAB、VALETRAB、SOCKETTRAB、MAINTRAB等元器件,是单独或以组合电路形式被应用到被保护电路中,因为每个元器件有其各自不同的特性,并且具有不同的性能:放电能力;响应特性;灭弧性能;限压精度。根据不同的应用场合以及设备对浪涌电压保护的要求,可根据各类产品的特性来组合出符合应用要求的过电压保护系统。

2、浪涌电压吸收器

浪涌噪声常用浪涌吸收器进行抑制,常用的浪涌吸收器有:

(1)氧化锌压敏电阻

氧化锌压敏电阻是以氧化锌为主体材料制成的压敏电阻,其电压非线性系数高,容量大、残压低、漏电流小、无续流、伏安特性对称、电压范围宽、响应速度快、电压温度系数小,且具有工艺简单、成本低廉等优点,是目前广泛使用的浪涌电压保护器件。适用于交流电源电压的浪涌吸收、各种线圈、接点间浪涌电压吸收及灭弧,三极管、晶闸管等电力电子器件的浪涌电压保护。

(2)R、C、D组合浪涌吸收器

R、C、D组合浪涌吸收器比较适用于直流电路,可根据电路的特性对器件进行不同的组合,如图1(a)适用于高电平直流控制系统,而图1(b)中采用齐纳稳压管或双向二极管,适用于正反向需要保护的电路。

图1R、C、D浪涌保护器 (a)单向保护(b)双向保护

图2TVS电压(电流)时间特性

(3)瞬态电压抑制器(TVS)

当TVS两极受到反向高能量冲击时,它能以10-12s级的速度,将其两极间的阻抗由高变低,吸收高达数kW的浪涌功率,使两极的电位箝位于预定值,有效地保护自动化设备中的元器件免受浪涌脉冲的损害。TVS具有响应时间快、瞬态功率大、漏电流低、击穿电压偏差小、箝位电压容易控制、体积小等优点,目前被广泛应用于电子设备等领域。

①TVS的特性

其正向特性与普通二极管相同,反向特性为典型的PN结雪崩器件。图2是TVS的电流-时间和电压-时间曲线。在浪涌电压的作用下,TVS两极间的电压由额定反向关断电压VWM上升到击穿电压Vbr而被击穿。随着击穿电流的出现,流过TVS的电流将达到峰值脉冲电流IPP,同时在其两端的电压被箝位到预定的最大箝位电压VC以下。其后,随着脉冲电流按指数衰减,TVS两极间的电压也不断下降,最后恢复到初态,这就是TVS抑制可能出现的浪涌脉冲功率,保护电子元器件的过程。

②TVS与压敏电阻的比较

目前,国内不少需要进行浪涌保护的设备上应用压敏电阻较为普遍,TVS与压敏电阻性能比较如表1所示:

表1TVS与压敏电阻的比较

参数 TVS 压敏电阻

反应速度 10-12s 50×10-9s

是否老化 否 是

最高使用温度 175℃ 115℃

器件极性 单双极性 单极性

反向漏电流 5μA 200μA

箝位因子VC/Vbr 不大于15 最大7~8

封闭性质 密封 透气

价格 较贵 便宜

3、综合浪涌保护系统组合

31三级保护

自动控制系统所需的浪涌保护应在系统设计中进行综合考虑,针对自动控制装置的特性,应用于该系统的浪涌保护器基本上可以分为三级,对于自动控制系统的供电设备来说,需要雷击电流放电器、过压放电器以及终端设备保护器。数据通信和测控技术的接口电路,比各终端的供电系统电路显然要灵敏得多,所以必须对数据接口电路进行细保护。

自动化装置的供电设备的第一级保护采用的是雷击电流放电器,它们不是安装在建筑物的进口处,就是在总配电箱里。为保证后续设备不承受太高的残压,必须根据被保护范围的性质,在下级配电设施中安装过电压放电器,作为二级保护措施。第三级保护是为了保护仪器设备,采取的方法是,把过电压放电器直接安装在仪器的前端。自动控制系统三级保护布置如图3所示。在不同等级的放电器之间,必须遵守导线的最小长度规定。供电系统中雷击电流放电器与过压放电器之间的距离不得小于10m,过压放电器同仪器设备保护装置之间的导线距离则不应小于5m(即一级SPD与二级SPD连接线路间距至少10米,二级SPD与三级SPD连接线路间距至少5米)。

32三级保护器件

(1)充有惰性气体的过电压放电器是自动控制系统中应用较广泛的一级浪涌保护器件。充有惰性气体过电压放电器,一般构造的这类放电器可以排放20kA(8/20μs)或者25kA(10/350μs)以内的瞬变电流。气体放电器的响应时间处于ns范围,被广泛地应用于远程通信范畴。该器件的一个缺点是它的触发特性与时间相关,其上升时间的瞬变量同触发特性曲线在几乎与时间轴平行的范围里相交。因此保护电平将同气体放电器额定电压相近。而特别快的瞬变量将同触发曲线在十倍于气体放电器额定电压的工作点相交,也就是说,如果某个气体放电器的最小额定电压90V,那么线路中的残压可高达900V。它的另一个缺点是可能会产生后续电流。在气体放电器被触发的情况下,尤其是在阻抗低、电压超过24V的电路中会出现下列情况:即原来希望维持几个ms的短路状态,会因为该气体放电器继续保持下去,由此引起的后果可能是该放电器在几分之一秒的时间内爆碎。所以在应用气体放电器的过电压保护电路中应该串联一个熔断器,使得这种电路中的电流很快地被中断。

图3放电器分布图

(2)压敏电阻被广泛作为系统中的二级保护器件,因压敏电阻在ns时间范围内具有更快的响应时间,不会产生后续电流的问题。在测控设备的保护电路中,压敏电阻可用于放电电流为25kA~5kA(8/20μs)的中级保护装置。压敏电阻的缺点是老化和较高的电容问题,老化是指压敏电阻中二极管的PN部分,在通常过载情况下,PN结会造成短路,其漏电流将因此而增大,其值的大小取决于承载的频繁程度。其应用于灵敏的测量电路中将造成测量失真,并且器件易发热。压敏电阻大电容问题使它在许多场合不能应用于高频信息传输线路,这些电容将同导线的电感一起形成低通环节,从而对信号产生严重的阻尼作用。不过,在30kHz以下的频率范围内,这一阻尼作用是可以忽略的。

(3)抑制二极管一般用于高灵敏的电子电路,其响应时间可达ps级,而器件的限压值可达额定电压的18倍。其主要缺点是电流负荷能力很弱、电容相对较高,器件自身的电容随着器件额定电压变化,即器件额定电压越低,电容则越大,这个电容也会同相连的导线中的电感构成低通环节,而对数据传输产生阻尼作用,阻尼程度与电路中的信号频率相关。

五、 参考依据与文献

1 IEC61643-12:2002 电涌保护器(SPD)第12部分:连接于低压电力系统的电涌保护器——选型和应用原则。

2 IEC61643-1:1998,IDT :低压配电系统的电涌保护器(SPD)第一部分:性能要求和试验方法

3建筑物防雷设计规范(GB50057-94)工程建设标准局部修订公告 第24号

4中国气象局第3号令《防雷减灾管理办法》

北京德曼尼机电技术有限公司 总工程师 曹 原撰

它的工作原理是:

在雷雨天气,高楼上空出现带电云层时,避雷针和高楼顶部都被感应上大量电荷,由于避雷针针头是尖的,而静电感应时,导体尖端总是聚集了最多的电荷.这样,避雷针就聚集了大部分电荷.避雷针又与这些带电云层形成了一个电容器,由于它较尖,即这个电容器的两极板正对面积很小,电容也就很小,也就是说它所能容纳的电荷很少.而它又聚集了大部分电荷,所以,当云层上电荷较多时,避雷针与云层之间的空气就很容易被击穿,成为导体.这样,带电云层与避雷针形成通路,而避雷针又是接地的.避雷针就可以把云层上的电荷导人大地,使其不对高层建筑构成危险,保证了它的安全.

以上就是关于避雷针的原理是什么全部的内容,包括:避雷针的原理是什么、避雷针的材料与工作原理、解释避雷针的工作原理和过程等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

转载请注明原文地址:https://juke.outofmemory.cn/read/3736319.html

最新回复(0)